李冬, 彭苏萍, 杜文凤, 邢朕国, 李泽辰. 煤层瓦斯突出危险区综合预测方法[J]. 煤炭学报, 2018, (2): 466-472. DOI: 10.13225/j.cnki.jccs.2017.1229
引用本文: 李冬, 彭苏萍, 杜文凤, 邢朕国, 李泽辰. 煤层瓦斯突出危险区综合预测方法[J]. 煤炭学报, 2018, (2): 466-472. DOI: 10.13225/j.cnki.jccs.2017.1229
LI Dong, PENG Suping, DU Wenfeng, XING Zhenguo, LI Zechen. Comprehensive prediction method of coal seam gas outburst danger zone[J]. Journal of China Coal Society, 2018, (2): 466-472. DOI: 10.13225/j.cnki.jccs.2017.1229
Citation: LI Dong, PENG Suping, DU Wenfeng, XING Zhenguo, LI Zechen. Comprehensive prediction method of coal seam gas outburst danger zone[J]. Journal of China Coal Society, 2018, (2): 466-472. DOI: 10.13225/j.cnki.jccs.2017.1229

煤层瓦斯突出危险区综合预测方法

Comprehensive prediction method of coal seam gas outburst danger zone

  • 摘要: 常规的瓦斯突出预测技术,主要从单一角度出发,无法达到多因素影响下的瓦斯突出危险区域预测精度。以某研究区为例,利用基于遗传算法的支持向量机(SVM)网络,预测了瓦斯含量;将孔隙度作为构造煤的判别因子,并通过概率神经网络(PNN)反演方法,得到了构造煤分布情况;介绍了基于自然伽马曲线的拟密度反演方法,获得了煤层顶板岩性情况。综合瓦斯含量、构造煤分布及煤层顶板岩性3个方面特征,建立了一套瓦斯突出危险区域综合预测方法,为判断瓦斯突出危险区提供了理论基础。经过与实际突出位置做验证,预测结果吻合,说明了综合预测方法在此研究区具有较高的准确性。

     

    Abstract: Conventional technology only considers one factor,which cannot achieve the same precision of gas outburst zone as multi-factor prediction methods. Taking an area as an example,the support vector machine ( SVM) network based on genetic algorithm was used to predict the gas content. The porosity was used as the discriminant factor of tec- tonic coal. Distribution of tectonic coal was obtained by probabilistic neural network (PNN). The quasi-density inver- sion method based on natural gamma curve was in-troduced to obtain the lithology of coal seam roof. Characteristics of gas content,tectonic coal distribution and coal seam roof lithology was comprehensively considered to establish the gas outburst risk area comprehensive fore-casting method,which provided a theoretical basis to determine the gas outburst danger zone. The prediction results were consistent with actual prominent positions,which proved that this comprehen- sive forecasting method had high accuracy in this study area.

     

/

返回文章
返回
Baidu
map