基于平行黏结模型的含瓦斯水合物煤体宏细观力学性质研究

王楠楠, 高霞, 张吉哲, 张保勇, 吴强

王楠楠,高霞,张吉哲,等. 基于平行黏结模型的含瓦斯水合物煤体宏细观力学性质研究[J]. 煤炭学报,2024,49(S1):314−326. DOI: 10.13225/j.cnki.jccs.2023.0580
引用本文: 王楠楠,高霞,张吉哲,等. 基于平行黏结模型的含瓦斯水合物煤体宏细观力学性质研究[J]. 煤炭学报,2024,49(S1):314−326. DOI: 10.13225/j.cnki.jccs.2023.0580
WANG Nannan,GAO Xia,ZHANG Jizhe,et al. Macro-micro mechanical behavior research on gas hydrate bearing coal based on parallel bonding model[J]. Journal of China Coal Society,2024,49(S1):314−326. DOI: 10.13225/j.cnki.jccs.2023.0580
Citation: WANG Nannan,GAO Xia,ZHANG Jizhe,et al. Macro-micro mechanical behavior research on gas hydrate bearing coal based on parallel bonding model[J]. Journal of China Coal Society,2024,49(S1):314−326. DOI: 10.13225/j.cnki.jccs.2023.0580

基于平行黏结模型的含瓦斯水合物煤体宏细观力学性质研究

基金项目: 国家自然科学基金资助项目(51674108, 51974112);国家自然科学基金联合基金资助项目(U21A20111)
详细信息
    作者简介:

    王楠楠(1994—),女,河南商丘人,硕士研究生。E-mail:18637852205@qq.com

    通讯作者:

    高 霞(1984—),女,山西忻州人,副教授,博士。E-mail:klgaoxia1984@163.com

  • 中图分类号: TD712

Macro-micro mechanical behavior research on gas hydrate bearing coal based on parallel bonding model

  • 摘要: 为了研究围压和饱和度对含瓦斯水合物煤体宏细观力学特性的影响规律,对它进行三轴压缩试验离散元模拟。首先,利用颗粒流程序PFC3D构建3种不同饱和度的含瓦斯水合物煤试样数值模型,其中水合物的胶结作用通过平行黏结模型进行模拟。其次,通过与室内三轴试验结果进行比较,标定能够反映其力学特性的细观参数。试验结果和模拟结果的应力−应变曲线趋势基本吻合,破坏强度、强度参数误差率均在10%以内,从而验证所建模型的可靠性。进而,对不同围压下含瓦斯水合物煤体三轴试验进行离散元模拟,从应力−应变曲线以及速度场、接触力链、配位数及孔隙率角度分别分析其宏细观力学特征。结果表明:离散元模拟结果与室内试验结果吻合较好,整体上能够较好模拟试样的应变硬化特征。从速度场变化规律可以发现,低饱和度下试样剪胀程度较高,高围压下试样剪缩程度较高。不同饱和度、围压条件下,破坏强度处的主力链传递方向没有明显区别。随着围压和饱和度的增大,接触力增大,接触力链个数增加;配位数整体呈增大趋势,孔隙率整体呈减小趋势,使得试样强度增强;摩擦是维持试样细观力学体系稳定的重要因素。研究结果从细观尺度上揭示饱和度和围压对含瓦斯水合物煤体强度变形破坏等宏观力学特性的影响机制,为含瓦斯水合物煤体三轴试验离散元模拟建模提供理论参考以及为利用水合物技术预防煤与瓦斯突出提供依据。
    Abstract: Discrete element simulation of triaxial compression test was carried out to study the effects of confining pressure and saturation on the macro and meso mechanical properties of gas hydrate bearing coal (GHBC). Firstly, the numerical models of three kinds of GHBC with different saturations were established by particle flow program PFC3D, with the cementation of hydrate simulated by parallel bonding model. Then, the meso mechanical parameters were calibrated by using the results of the physical triaxial test. The stress-strain curves of the physical tests agree with the simulated results, with the failure strength and strength parameter error rate within 10%, which verifies the reliability of the established numerical model. Furthermore, the triaxial tests of GHBC were performed under different confining pressures to analyze the macro and meso-mechanical characteristics such as the stress-strain curve, velocity field, contact force chain, coordination number and porosity. The results show that the discrete element simulation results agree well with the indoor test results, especially simulating the strain hardening characteristics of the sample. The velocity field reveals a higher dilatancy degree under low saturation and a higher contraction degree under the high confining pressure of the samples. There is no obvious difference in the main chain transfer direction at the failure strength under different saturations and confining pressures. The contact force, the number of contact force chains, as well as the coordination number increase with the increase of confining pressure and saturation, while the porosity tends to decrease, which enhances the strength of the samples. The friction is an important factor to maintain the stability of the meso mechanical system of the samples. The influence mechanism of saturation and confining pressure on the strength deformation and failure of GHBC is revealed from the microscale, which provides a theoretical reference for the discrete element simulation of GHBC triaxial test and for the prevention of coal and gas outburst by hydrate technology.
  • 图  1   数值模拟试验流程

    Figure  1.   Numerical simulation test flow chart

    图  2   随机含瓦斯水合物煤体颗粒三轴压缩试验模拟

    Figure  2.   Simulation of random GHBC particles under the triaxial compression test

    图  3   三轴数值试验计算模型

    Figure  3.   Calculation model for triaxial numerical test

    图  4   试验与离散元数值模拟曲线对比

    Figure  4.   Comparison of numerical simulation curves between test and discrete element

    图  5   数值模拟三轴试验莫尔圆

    Figure  5.   Numerical simulation of triaxial test Mohr circle

    图  6   围压20 MPa下不同监测点的速度场

    Figure  6.   Velocity field changes at different monitoring points under confining pressure of 20 MPa

    图  7   破坏强度处速度场云图

    Figure  7.   Velocity field cloud image at failure intensity

    图  8   围压20 MPa下不同监测点的接触力链

    Figure  8.   Contact force chain changes at different monitoring points under confining pressure of 20 MPa

    图  9   不同围压、不同饱和度下接触个数、接触力与轴向应变关系以及破坏强度处接触力链云图

    Figure  9.   Contact number, contact force and axial strain relationship under different confining pressures and saturation as well as contact force chain cloud diagram at failure strength

    图  10   测量球布置示意

    Figure  10.   Schematic diagram of measuring ball layout

    图  11   配位数与轴应变关系曲线

    Figure  11.   Curves of coordination number vs. axial strain

    图  12   孔隙率与轴应变关系曲线

    Figure  12.   Curves of porosity vs. axial strain

    表  1   试样材料参数

    Table  1   Material parameters of the sample

    煤颗粒粒径
    [Rmin, Rmax]/mm
    瓦斯水合物颗粒
    粒径R/mm
    颗粒密度ρ/
    (kg·m−3)
    孔隙率n 摩擦因数μ¯ 黏结刚
    度比k¯n/k¯s
    法向黏结
    强度σ¯c/MPa
    黏结半径
    系数λ¯
    内摩擦角φ¯/(°) 黏聚力c¯/
    MPa
    0.075, 0.1 0.06 1220 0.4 0.1 1.0 1.0 1.0 10 10
    下载: 导出CSV

    表  2   三轴压缩试验平行黏结模型的细观参数

    Table  2   Meso - parameters of parallel bonding model in triaxial compression test

    σ3/MPa Sh/% k¯n/k¯s μ¯ σ¯c/MPa λ¯ φ¯/(°) c¯/MPa
    12 80 1.00 0.60 1.00 1.00 15.00 7.00
    50 1.00 0.50 1.00 1.00 15.00 6.00
    20 1.00 0.10 1.00 1.00 18.00 4.00
    16 80 1.00 0.35 1.00 0.10 15.00 7.00
    50 1.00 0.40 1.00 0.10 15.00 6.00
    20 1.00 0.30 1.00 0.10 18.00 4.00
    20 80 1.00 0.23 1.00 0.50 15.00 7.00
    50 1.00 0.25 1.00 0.50 15.00 6.00
    20 1.00 0.17 1.00 0.50 18.00 4.00
    下载: 导出CSV

    表  3   数值和室内试验的σc

    Table  3   Numerical and laboratory tests of σc

    σ3/MPa Sh/% σc/MPa 误差率/%
    试验 模拟
    12 80 21.80 21.12 3.12
    50 20.17 20.82 3.22
    20 16.43 16.60 1.03
    16 80 30.99 30.58 1.32
    50 27.69 26.98 2.56
    20 26.58 26.51 0.50
    20 80 27.84 26.98 3.10
    50 29.38 31.18 6.13
    20 29.50 29.44 0.02
    下载: 导出CSV
  • [1] 杨雪林,文光才,孙海涛,等. 煤与瓦斯突出冲击动力效应及致灾特征模拟实验系统研制与应用[J]. 煤炭学报,2023,48(10):3731−3749.

    YANG Xuelin, WEN Guangcai, SUN Haitao, et al. Development and application of simulation experimental system for impact dynamic effect and disaster-causing characteristics of coal and gas outburst[J]. Journal of China Coal Society,2023,48(10):3731−3749.

    [2] 彭守建,杨海林,程亮,等. 真三轴应力状态下煤与瓦斯突出两相流L型巷道运移特性试验研究[J]. 煤炭学报,2023,48(S2):597−606.

    PENG Shoujian, YANG Hailin, CHENG Liang, et al. The study of the migration characteristics of coal and gas in the three axis stress is studied[J]. Journal of China Coal Society,2023,48(S2):597−606.

    [3] 唐巨鹏,郝娜,潘一山,等. 基于声发射能量分析的煤与瓦斯突出前兆特征试验研究[J]. 岩石力学与工程学报,2021,40(1):31−42.

    TANG Jupeng, HAO Na, PAN Yishan, et al. Experimental study on precursor characteristics of coal and gas outbursts based on acoustic emission energy analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):31−42.

    [4]

    WU Q, HE X Q. Preventing coal and gas outburst using methane hydration[J]. International Journal of Mining Science and Technology,2003,13(1):7−10.

    [5]

    MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Effect of confining pressure on triaxial compressive properties of artificial methane hydrate bearing sediments[C]//All Days. Houston, Texas, USA. OTC, 2010.

    [6]

    GHIASSIAN H, GROZIC J L H. Strength behavior of methane hydrate bearing sand in undrained triaxial testing[J]. Marine and Petroleum Geology,2013,43:310−319. doi: 10.1016/j.marpetgeo.2013.01.007

    [7]

    YAN C L, CHENG Y F, LI M L, et al. Mechanical experiments and constitutive model of natural gas hydrate reservoirs[J]. International Journal of Hydrogen Energy,2017,42(31):19810−19818. doi: 10.1016/j.ijhydene.2017.06.135

    [8] 孙晓杰,程远方,李令东,等. 天然气水合物岩样三轴力学试验研究[J]. 石油钻探技术,2012,40(4):52−57. doi: 10.3969/j.issn.1001-0890.2012.04.011

    SUN Xiaojie, CHENG Yuanfang, LI Lingdong, et al. Triaxial compression test on synthetic core sample with simulated hydrate-bearing sediments[J]. Petroleum Drilling Techniques,2012,40(4):52−57. doi: 10.3969/j.issn.1001-0890.2012.04.011

    [9] 吴起,卢静生,李栋梁,等. 降压开采过程中含水合物沉积物的力学特性研究[J]. 岩土力学,2018,39(12):4508−4516.

    WU Qi, LU Jingsheng, LI Dongliang, et al. Experimental study of mechanical properties of hydrate-bearing sediments during depressurization mining[J]. Rock and Soil Mechanics,2018,39(12):4508−4516.

    [10] 王淑云,罗大双,张旭辉,等. 含水合物黏土的力学性质试验研究[J]. 实验力学,2018,33(2):245−252. doi: 10.7520/1001-4888-16-220

    WANG Shuyun, LUO Dashuang, ZHANG Xuhui, et al. Experimental study of mechanical properties of hydrate clay[J]. Journal of Experimental Mechanics,2018,33(2):245−252. doi: 10.7520/1001-4888-16-220

    [11] 张伏光,蒋明镜. 胶结砂土强度特性的真三轴试验离散元分析[J]. 岩石力学与工程学报,2018,37(6):1530−1539.

    ZHANG Fuguang, JIANG Mingjing. Analysis of the strength behaviour of cemented sands in true triaxial test with distinct element method[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1530−1539.

    [12]

    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique,1979,29(1):47−65.

    [13] 周世琛,郇筱林,陈宇琪,等. 天然气水合物沉积物不排水剪切特性的离散元模拟[J]. 石油学报,2021,42(1):73−83.

    ZHOU Shichen, HUAN Xiaolin, CHEN Yuqi, et al. DEM simulation on undrained shear characteristics of natural gas hydrate bearing sediments[J]. Acta Petrolei Sinica,2021,42(1):73−83.

    [14]

    BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter,2010,12(5):517−525. doi: 10.1007/s10035-010-0210-y

    [15]

    JIANG M J, SUN Y G, YANG Q J. A simple distinct element modeling of the mechanical behavior of methane hydrate-bearing sediments in deep seabed[J]. Granular Matter,2013,15(2):209−220. doi: 10.1007/s10035-013-0399-7

    [16] 贺洁,蒋明镜. 孔隙填充型深海能源土的离散元成样新方法及宏观力学特性[J]. 同济大学学报(自然科学版),2016,44(5):709−717.

    HE Jie, JIANG Mingjing. Three-dimensional distinct element novel sample-preparing method and mechanical behavior for pore-filling type of methane hydrate-bearing soil[J]. Journal of Tongji University (Natural Science),2016,44(5):709−717.

    [17] 杨期君,赵春风. 水合物沉积物力学性质的三维离散元分析[J]. 岩土力学,2014,35(1):255−262.

    YANG Qijun, ZHAO Chunfeng. Three-dimensional discrete element analysis of mechanical behavior of methane hydrate-bearing sediments[J]. Rock and Soil Mechanics,2014,35(1):255−262.

    [18] 杨忠平,李进,蒋源文,等. 含石率对土石混合体–基岩界面剪切力学特性的影响[J]. 岩土工程学报,2021,43(8):1443−1452.

    YANG Zhongping, LI Jin, JIANG Yuanwen, et al. Influences of stone content on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1443−1452.

    [19]

    LI Y H, LIU W G, ZHU Y M, et al. Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods[J]. Applied Energy,2016,162:1627−1632. doi: 10.1016/j.apenergy.2015.04.065

    [20]

    SUN X, WANG L, LUO H, et al. Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization[J]. Journal of Petroleum Science and Engineering,2019,177:971−982. doi: 10.1016/j.petrol.2019.03.012

    [21]

    WU P, LI Y H, LIU W G, et al. Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research (Solid Earth),2020,125(1):e2019JB018623. doi: 10.1029/2019JB018623

    [22] 高霞,刘文新,高橙,等. 含瓦斯水合物煤体强度特性三轴试验研究[J]. 煤炭学报,2015,40(12):2829−2835.

    GAO Xia, LIU Wenxin, GAO Cheng, et al. Triaxial shear strength of methane hydrate-bearing coal[J]. Journal of China Coal Society,2015,40(12):2829−2835.

    [23] 张保勇,于洋,高霞,等. 轴向应力加卸载过程含瓦斯水合物煤体渗透率变化规律研究[J]. 岩石力学与工程学报,2022,41(11):2283−2298.

    ZHANG Baoyong, YU Yang, GAO Xia, et al. Permeability of mine gas hydrate bonded coal against loading-unloading of axial stress[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(11):2283−2298.

    [24] 袁康,蒋宇静,李亿民,等. 基于颗粒离散元法岩石压缩过程破裂机制宏细观研究[J]. 中南大学学报(自然科学版),2016,47(3):913−922.

    YUAN Kang, JIANG Yujing, LI Yimin, et al. Macro-micro mechanical research on failure mechanism of rock subjected to compression loading based on DEM[J]. Journal of Central South University (Science and Technology),2016,47(3):913−922.

    [25]

    Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3D), Version 3.0[R]. Minneapolis:Itasca Consulting Group, 2002.

    [26] 于洋. 不同应力路径下含瓦斯水合物煤体强度及变形特性试验研究[D]. 哈尔滨:黑龙江科技大学,2019.

    YU Yang. Experimental study on strength and deformation characteristics of coal containing gas hydrate under different stress paths[D]. Harbin:Heilongjiang University of Science and Technology, 2019.

    [27]

    International Society for Rock Mechanics (ISRM). Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15(3):99−103.

    [28] 国家质量技术监督局. 建筑石膏 力学性能的测定:GB/T 17669.3—1999[S]. 北京:中国标准出版社,1999.
    [29] 郭中华,朱珍德,杨志祥,等. 岩石强度特性的单轴压缩试验研究[J]. 河海大学学报(自然科学版),2002,30(2):93−96.

    GUO Zhonghua, ZHU Zhende, YANG Zhixiang, et al. Study on rock strength characteristics based on uniaxial compression tests[J]. Journal of Hehai University (Natural Sciences),2002,30(2):93−96.

    [30] 尹小涛,李春光,王水林,等. 岩土材料细观、宏观强度参数的关系研究[J]. 固体力学学报,2011,32(S1):343−351.

    YIN Xiaotao, LI Chunguang, WANG Shuilin, et al. Study on relationship between micro-parameters and macro-parameters of rock and soil material[J]. Chinese Journal of Solid Mechanics,2011,32(S1):343−351.

    [31] 李宁,高岳. 透明砂土三轴试验的颗粒流模拟[C]//2011年全国工程地质学术年会论文集. 北京:科学出版社,2011:320−326.
    [32] 邓益兵,周健,刘文白,等. 螺旋挤土桩下旋成孔过程的颗粒流数值模拟[J]. 岩土工程学报,2011,33(9):1391−1398.

    DENG Yibing, ZHOU Jian, LIU Wenbai, et al. PFC numerical simulation of augered piling of soil displacement screw piles[J]. Chinese Journal of Geotechnical Engineering,2011,33(9):1391−1398.

    [33] 胡军霞,马一跃,张仕贤,等. 不排水条件下土石混合料双轴压缩离散元模拟[J]. 计算力学学报,2022,39(5):661−669.

    HU Junxia, MA Yiyue, ZHANG Shixian, et al. Discrete element simulation of biaxial compression of soil-rock mixture under undrained conditions[J]. Chinese Journal of Computational Mechanics,2022,39(5):661−669.

    [34] 姜波,汤雷,赵新铭,等. 岩石试样脆塑性破裂全过程数值试验研究[J]. 矿业研究与开发,2021,41(1):81−87.

    JIANG Bo, TANG Lei, ZHAO Xinming, et al. Numerical experiment on the whole process of brittle and plastic fracture of rock samples[J]. Mining Research and Development,2021,41(1):81−87.

    [35] 张扬. 真三轴应力状态下岩石变形破坏过程细观数值模拟研究[D]. 徐州:中国矿业大学,2018.

    ZHANG Yang. Microscopic numerical simulation of deformation and failure process of rock under true triaxial stress[D]. Xuzhou:China University of Mining and Technology, 2018.

    [36]

    MASUI A, HANEDA H, OGATA Y, et al. The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments[C]//Proceedings of the 5th International Conference on gas hydrates. Trondheim, Norway, 2005.

    [37] 周博,王宏乾,王辉,等. 水合物沉积物的力学本构模型及参数离散元计算[J]. 应用数学和力学,2019,40(4):375−385.

    ZHOU Bo, WANG Hongqian, WANG Hui, et al. A mechanical constitutive model for hydrate-bearing sediments and calculation of material parameters with the discrete element method[J]. Applied Mathematics and Mechanics,2019,40(4):375−385.

    [38] 蒋明镜,刘俊,申志福. 裹覆型能源土力学特性真三轴试验离散元数值分析[J]. 中国科学:物理学 力学 天文学,2019,49(3):153−164.

    JIANG Mingjing, LIU Jun, SHEN Zhifu. Investigating the mechanical behavior of grain-coating type methane hydrate bearing sediment in true triaxial compression tests by distinct element method[J]. Scientia Sinica (Physica, Mechanica & Astronomica),2019,49(3):153−164.

    [39] 刘军,孙田,张豫湘,等. 不同粒径砂土的细观离散元模拟[J]. 北京建筑大学学报,2016,32(4):18−22.

    LIU Jun, SUN Tian, ZHANG Yuxiang, et al. Mesoscopic simulations by the DEM based on different sand particle diameters[J]. Journal of Beijing University of Civil Engineering and Architecture,2016,32(4):18−22.

    [40] 王楠楠. 基于PFC3D的含瓦斯水合物煤体宏细观力学行为数值模拟研究[D]. 哈尔滨:黑龙江科技大学,2022.

    WANG Nannan. Numerical Simulation of macro and micro mechanical behavior of coal containing gas hydrate based on PFC3D [D]. Harbin:Heilongjiang University of Science and Technology, 2022.

    [41] 金磊,曾亚武. 土石混合体宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报,2018,37(6):1540−1550.

    JIN Lei, ZENG Yawu. Refined simulation for macro-and meso-mechanical properties and failure mechanism of soil-rock mixture by 3D DEM[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1540−1550.

    [42] 齐阳,唐新军,李晓庆. 粗粒土应力诱发各向异性真三轴试验颗粒流模拟研究[J]. 岩土工程学报,2015,37(12):2292−2300.

    QI Yang, TANG Xinjun, LI Xiaoqing. Stress-induced anisotropy of coarse-grained soil by true triaxial tests based on PFC[J]. Chinese Journal of Geotechnical Engineering,2015,37(12):2292−2300.

    [43] 刘香,吴成龙,孙国栋,等. 高炉矿渣粉煤灰混合料的宏细观力学参数相关性分析[J]. 土木工程与管理学报,2015,32(2):1−7.

    LIU Xiang, WU Chenglong, SUN Guodong, et al. Correlation analysis of blast furnace slag fly ash mixture of the macro micro mechanics parameter[J]. Journal of Civil Engineering and Management,2015,32(2):1−7.

    [44] 韩振华,张路青,周剑. 基于PFC2D模拟的矿物粒径非均质效应研究[J]. 工程地质学报,2019,27(4):706−716.

    HAN Zhenhua, ZHANG Luqing, ZHOU Jian. Effect of mineral particle size heterogeneity on mechanical properties in PFC2D simulation[J]. Journal of Engineering Geology,2019,27(4):706−716.

    [45] 黄彦华,杨圣奇. 非共面双裂隙红砂岩宏细观力学行为颗粒流模拟[J]. 岩石力学与工程学报,2014,33(8):1644−1653.

    HUANG Yanhua, YANG Shengqi. Particle flow simulation of macro- and meso-mechanical behavior of red sandstone containing two pre-existing non-coplanar fissures[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(8):1644−1653.

    [46] 张振平,盛谦,付晓东,等. 基于颗粒离散元的土石混合体直剪试验模拟研究[J]. 应用基础与工程科学学报,2021,29(1):135−146.

    ZHANG Zhenping, SHENG Qian, FU Xiaodong, et al. Research on numerical direct shear test of soil-rock mixture based on particle flow code simulation[J]. Journal of Basic Science and Engineering,2021,29(1):135−146.

    [47] 丁同. 基于三轴及CBR试验的级配碎石细观力学参数研究[D]. 西安:长安大学,2021.

    DING Tong. Research on mesomechanical parameters of graded macadam based on triaxial and CBR test[D]. Xi’an:Changan University, 2021.

    [48] 张崇帅. 考虑球体颗粒胶结的三维颗粒流模拟研究[D]. 西安:西安理工大学,2019.

    ZHANG Chongshuai. PFC3D simulation study considering spherical particle cementation[D]. Xi’an:Xi’an University of Technology, 2019.

    [49] 孙其诚,辛海丽,刘建国,等. 颗粒体系中的骨架及力链网络[J]. 岩土力学,2009,30(S1):83−87.

    SUN Qicheng, XIN Haili, LIU Jianguo, et al. Skeleton and force chain network in granular system[J]. Rock and Soil Mechanics,2009,30(S1):83−87.

    [50] 杨涵,徐文杰,张启斌. 散体颗粒介质变形局部化宏–细观机制研究[J]. 岩石力学与工程学报,2015,34(8):1692−1701.

    YANG Han, XU Wenjie, ZHANG Qibin. Macro- and meso-mechanism of strain localization in granular material[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1692−1701.

    [51]

    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique,2000,50(1):43−53.

    [52] 朱海燕,党益珂,刘清友,等. 凹土棒石的物理力学性质实验及数值模拟研究[J]. 中国科学:物理学 力学 天文学,2019,49(12):107−117.

    ZHU Haiyan, DANG Yike, LIU Qingyou, et al. Experimental and numerical simulation research of the physical and mechanical properties of Attapulgite clay[J]. Scientia Sinica (Physica, Mechanica & Astronomica),2019,49(12):107−117.

    [53] 华文俊,肖源杰,王萌,等. 级配与颗粒形状对复杂堆积体路基填料剪切性能影响的离散元模拟研究[J]. 中南大学学报(自然科学版),2021,52(7):2332−2348.

    HUA Wenjun, XIAO Yuanjie, WANG Meng, et al. Discrete element modeling(DEM) study on effect of gradation and morphology on shear strength behavior of rock debris as embankment fill materials[J]. Journal of Central South University (Science and Technology),2021,52(7):2332−2348.

    [54] 张宜,周伟,马刚,等. 细颗粒截断粒径对堆石体力学特性影响的数值模拟[J]. 武汉大学学报(工学版),2017,50(3):332−339.

    ZHANG Yi, ZHOU Wei, MA Gang, et al. Effect of minimum particle size on mechanical properties of rockfill materials by numerical simulation[J]. Engineering Journal of Wuhan University,2017,50(3):332−339.

图(12)  /  表(3)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  6
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-07-15
  • 网络出版日期:  2024-07-29
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回
    Baidu
    map