煤矿覆岩主控致灾层位危险识别及现场应用

马玉镇, 朱斯陶, 潘俊锋, 高永涛, 张修峰, 姜福兴, 刘金海, 王冰, 陈洋

马玉镇,朱斯陶,潘俊锋,等. 煤矿覆岩主控致灾层位危险识别及现场应用[J]. 煤炭学报,2024,49(6):2589−2603. DOI: 10.13225/j.cnki.jccs.2023.0654
引用本文: 马玉镇,朱斯陶,潘俊锋,等. 煤矿覆岩主控致灾层位危险识别及现场应用[J]. 煤炭学报,2024,49(6):2589−2603. DOI: 10.13225/j.cnki.jccs.2023.0654
MA Yuzhen,ZHU Sitao,PAN Junfeng,et al. Identification and on-site application of the main hazard-causing stratum of overlying strata in coal mines[J]. Journal of China Coal Society,2024,49(6):2589−2603. DOI: 10.13225/j.cnki.jccs.2023.0654
Citation: MA Yuzhen,ZHU Sitao,PAN Junfeng,et al. Identification and on-site application of the main hazard-causing stratum of overlying strata in coal mines[J]. Journal of China Coal Society,2024,49(6):2589−2603. DOI: 10.13225/j.cnki.jccs.2023.0654

煤矿覆岩主控致灾层位危险识别及现场应用

基金项目: 国家重点研发计划资助项目(2022YFC3004604);国家自然科学基金资助项目(52374076);中国科协青年人才托举工程资助项目(2021QNRC001)
详细信息
    作者简介:

    马玉镇(1996—),男,山东济南人,博士研究生。E-mail: mayuzhen1996@163.com

    通讯作者:

    朱斯陶(1990—),男,湖北荆州人,副教授,硕士生导师。E-mail: zhusitao@ustb.edu.cn

  • 中图分类号: TD324

Identification and on-site application of the main hazard-causing stratum of overlying strata in coal mines

  • 摘要:

    针对煤矿地面水力压裂技术施工中工作面覆岩主控致灾层位难以准确辨识的难题,以孟村煤矿401102工作面地面水力压裂工业试验为背景,采用理论分析、微震监测、现场调研等方法,揭示了煤矿厚硬覆岩运动诱发矿震和冲击地压的动力灾害机理,分析了基于载荷三带理论的厚硬覆岩分区运动特征与诱发动力灾害之间的关系,建立了基于关键层运动状态的矿震能量预测模型与采场等效附加应力估算模型,提出了基于K-means聚类算法和肘部法则的煤矿覆岩主控致灾层位识别技术方法,确定了现场压裂施工层位并进行工业试验,根据现场微震监测数据及理论分析结果进行了效果验证,得到结论如下:孟村煤矿401102工作面致冲关键层及矿震关键层均为距离煤层66 m的安定组关键层R9,其初次破断运动采场等效附加扰动应力理论值为7.23 MPa,初次破断运动释放矿震能量理论值为6.08×105 J,致灾危险性较强;震−冲关键层压裂后,矿震能量理论值降幅94%,采场等效附加扰动应力理论值降幅76%,工作面上方5×103 J大能量微震事件出现明显上移趋势,上移量约为15 m;103 J及以上能级微震事件频次占比显著下降,由60.39%降至17.89%,最大微震事件能量由6.65×105 J降至9.75×103 J;102 J及以下能级微震事件频次占比显著上升,由39.61%增至82.11%。

    Abstract:

    In response to the challenging task of accurately identifying the main hazard-causing layer of overlying strata in the coal mine surface hydraulic fracturing construction, this study focuses on the industrial test of ground hydraulic fracturing at the 401102 working face of the Mengcun Coal Mine. The research is conducted using the methods of theoretical analysis, microseismic monitoring, and on-site investigation to reveal the dynamic disaster mechanism of mine earthquakes and rock bursts induced by the movement of thick and hard overlying strata in the coal mines. The relationship between the movement characteristics of thick and hard overlying strata based on a three-zone structure loading model of overlying strata and induced dynamic disasters is analyzed, and a prediction model for mining seismic energy and an estimation model for equivalent additional stress in mining areas based on the movement state of key layers are established. A coal mine identification technology for the main hazard-causing layer of overlying strata is proposed based on the K-means clustering algorithm and the elbow rule. The construction layer for hydraulic fracturing is determined, and an industrial test is carried out on-site. The effectiveness is verified based on the microseismic monitoring data and theoretical analysis results, leading to the following conclusions. In the Mengcun Coal Mine’s 401102 working face, both the key stratum responsible for rock bursts and mine seismic activities can be traced to the R9 key stratum of the Anding Group, situated 66 meters away from the coal seam. The primary fracturing movement of this critical stratum R9 imparts an equivalent supplementary disturbance stress value of 7.23 MPa, with the seismic energy liberated by this initial rupture motion quantifying to 6.08×105 J, thereby indicating a pronounced susceptibility towards catastrophic occurrences. After fracturing the key layer which induces mining earthquakes and rock bursts, the theoretical value of the mine earthquake energy is reduced by 94%, and the theoretical value of the equivalent disturbance stress of the working face is reduced by 76%. High-energy microseismic events above the working face with an energy of 5×103 J show a noticeable upward trend, with an upward movement of approximately 15 m. The frequency ratio of microseismic events with an energy level of 103 J or higher significantly decreases from 60.39% to 17.89%, and the maximum microseismic event energy decreases from 6.65×105 J to 9.75×103 J. The proportion of microseismic events with an energy level of 102 J and below significantly increases from 39.61% to 82.11%.

  • 图  1   孟村煤矿401102工作面位置示意

    Figure  1.   Location diagram of the 401102 working face at Mengcun Coal Mine

    图  2   考虑工作面开采条件及厚硬岩层赋存状态的载荷三带结构划分判别模型

    Figure  2.   Load three-zone structure partitioning and discrimination model considering the working face mining conditions and the occurrence state of the thick and hard rock strata

    图  3   震−冲关键层运动致灾示意

    Figure  3.   Schematic diagram of disaster mechanism induced by mine earthquake and rock burst key layer movement

    图  4   基于关键层运动状态的矿震能量预测模型

    Figure  4.   Predictive model for mining seismic energy based on the movement state of key layers

    图  5   基于关键层运动状态的矿震能量估算公式[21]

    Figure  5.   Energy estimation formula for mining-induced seismic events based on the movement state of key layers[21]

    图  6   覆岩运动矿震能量传播衰减模型

    U—能量;U0—矿震震源点处能量;T—时间

    Figure  6.   Propagation and attenuation model for the energy of mining seismic events generated by overlying strata movement

    图  7   基于地表建筑物损伤及井下工作面冲击地压的灾害分级模型

    Figure  7.   Disaster grading model based on surface building damage and underground working face rock burst

    图  8   确定肘部法则中最佳聚类数K'示意

    Figure  8.   Schematic diagram illustrating the determination of the optimal number of clusters K' in the elbow rule

    图  9   基于K-means聚类识别算法及肘部法则的厚硬岩层顶板工作面覆岩主控诱灾层位识别模型

    Figure  9.   Identification model for the hazardous layer caused by the main control of overlying strata in the roof of a thick and hard rock layer at the working face using the K-means clustering identification algorithm and the elbow rule

    图  10   煤矿覆岩主控诱灾层位识别工程技术方法

    Figure  10.   Engineering technical methods for identifying the hazardous layer caused by the main control of overlying strata in coal mining

    图  11   401102工作面致灾覆岩层位识别的KESS折线示意

    Figure  11.   KESS (Sum of Squared Errors) line graph for identifying the hazardous overlying strata at the 401102 working face

    图  12   401102工作面地面水力压裂施工示意

    Figure  12.   Schematic diagram of ground hydraulic fracturing construction at the 401102 working face

    图  13   压裂前后工作面5×103 J微震事件层位分布箱线示意

    Figure  13.   Box plot of the distribution of 5×103 J microseismic events in the working face before and after hydraulic fracturing

    图  14   压裂前后工作面微震事件频次分布柱状示意

    Figure  14.   Bar chart of the frequency distribution of microseismic events in the working face before and after hydraulic fracturing

    表  1   401102工作面区域钻孔综合岩层参数

    Table  1   Comprehensive rock layer parameters of the 401102 working face area drilling

    岩层 岩性 厚度/m 岩层 岩性 厚度/m
    R27 黄土 117.60 R13 粉砂岩 18.03
    R26 泥岩 78.63 R12 中砂岩 1.52
    R25 粗粒砂岩 10.82 R11 粗粒砂岩 6.31
    R24 中砂岩 55.60 R10 细砂岩 13.62
    R23 含砾砂岩 50.67 R9 粗砂岩 38.28
    R22 细砂岩 46.58 R8 粉砂岩 8.74
    R21 含砾砂岩 57.04 R7 粗粒砂岩 1.75
    R20 砾岩 2.10 R6 砂质泥岩 12.13
    R19 含砾砂岩 14.57 R5 粗粒砂岩 6.95
    R18 中砂岩 41.44 R4 泥岩 9.96
    R17 粗粒砂岩 30.61 R3 粉砂岩 11.13
    R16 中粒砂岩 38.05 R2 细砂岩 6.87
    R15 粗粒砂岩 12.31 R1 砂质泥岩 8.45
    R14 砾岩 25.28 Coal 4煤 16.00
    下载: 导出CSV

    表  2   考虑开采条件及厚硬岩层赋存的载荷三带结构划分结果

    Table  2   Partitioning results of the load three-zone structure considering the mining conditions and the occurrence state of the thick and hard rock strata

    序号 HLh关系 厚硬岩层赋存 载荷三带厚度/m
    是否赋存 赋存层位 即时加载带ILZ 延时加载带DLZ 静载带SLZ
    1 10h < L < H 10h L−10h HL
    2 S < 10h S LS HL
    3 10h < S < L 10h L−10h HL
    4 L < S < H 10h L−10h HL
    5 L < 10h < H 10h H−10h
    6 S < 10h S 10h−S H−10h
    7 10h < S < H 10h H−10h
    8 H < L < 10h H
    9 S < H S HS
    10 10h < H < L 10h H−10h
    11 S < 10h S HS
    12 10h < S < H 10h H−10h
    13 H < 10h < L H
    14 S < H S HS
    15 L < H < 10h H
    16 S < H S HS
    下载: 导出CSV

    表  3   不同开采条件下厚硬岩层顶板工作面覆岩主控诱灾层位识别工程判据

    Table  3   Engineering criteria for identifying the hazardous layer caused by the main control of overlying strata in the roof of a thick and hard rock layer at the working face under different mining conditions

    地层及开采条件 矿震关键层$ {}O_{\max }^{\text{z}} $识别判据 致冲关键层$ {}O_{\max }^{\text{c}} $识别判据
    10h < L < H
    (S < 10h)
    $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, L\right]\end{array} \right. $ $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, L\right]\end{array} \right. $
    L < 10h < H
    (S < 10h)
    $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, 10h\right]\end{array} \right. $ $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, 10h\right]\end{array} \right. $
    H < L < 10h
    (S < H)
    $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, H\right]\end{array} \right. $ $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{i}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, H\right]\end{array} \right. $
    10h < H < L
    (S < 10h)
    $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[10h, H\right]\end{array} \right. $ $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[10h, H\right]\end{array} \right. $
    H < 10h < L
    (S < H)
    $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, H\right]\end{array} \right. $ $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{i}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, H\right]\end{array} \right. $
    L < H < 10h
    (S < H)
    $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, H\right]\end{array} \right. $ $ \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{i}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, H\right]\end{array} \right. $
    下载: 导出CSV

    表  4   401102工作面目标识别带关键层划分及岩层参数

    Table  4   Identification and division of key layers in the target recognition zone of the 401102 working face, along with the information regarding the rock layer parameters

    序号 地质层组 岩层 厚度/m 至煤层距离/m 弹性模量/GPa 抗拉强度/MPa 关键层划分
    6 宜君组 砾岩R14 25.28 143.74 17.12 2.83 关键层
    5 安定组 粉砂岩R13 18.03 125.71 7.02 1.79 关键层
    4 中砂岩R12 1.52 124.19 8.30 2.31
    3 粗粒砂岩R11 6.31 117.88 11.06 2.57
    2 细砂岩R10 13.62 104.26 13.08 2.05 关键层
    1 粗砂岩R9 38.28 65.98 11.06 2.57 关键层
    下载: 导出CSV

    表  5   401102工作面致灾覆岩识别参数

    Table  5   Identification parameters for the hazardous overlying strata at 401102 working face

    序号 地质层组 岩层 Δσcn/MPa Ucn/J
    4 宜君组 砾岩R14 0.47 268 407.21
    3 安定组 粉砂岩R13 0.55 125 445.56
    2 细砂岩R10 0.73 62 045.29
    1 粗砂岩R9 7.23 608 417.68
    下载: 导出CSV

    表  6   压裂前后目标识别带关键层识别参数情况

    Table  6   Comparison of key layer identification parameters in target identification zone before and after fracturing

    序号 岩层 压裂前 压裂后
    Δσcn/MPa Ucn/J Δσcn/MPa Ucn/J
    4 R14 0.47 268 407.21 0.17 33 846.24
    3 R13 0.55 125 445.56 0.53 115 733.30
    2 R10 0.73 62 045.29 0.64 52 225.49
    1 R9 7.23 608 417.68 1.72 34 599.06
    下载: 导出CSV
  • [1] 齐庆新,马世志,孙希奎,等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报,2023,48(5):1861−1874.

    QI Qingxin, MA Shizhi, SUN Xikui, et al. Theory and technical framework of coal mine rock burst origin prevention[J]. Journal of China Coal Society,2023,48(5):1861−1874.

    [2] 李铁,蔡美峰,蔡明. 采矿诱发地震分类的探讨[J]. 岩石力学与工程学报,2006,25(S2):3679−3686.

    LI Tie, CAI Meifeng, CAI Ming. A discussion on classification of mining-induced seismicity[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(S2):3679−3686.

    [3] 齐庆新,李晓璐,赵善坤. 煤矿冲击地压应力控制理论与实践[J]. 煤炭科学技术,2013,41(6):1−5.

    QI Qingxin, LI Xiaolu, ZHAO Shankun. Theory and practices on stress control of mine pressure bumping[J]. Coal Science and Technology,2013,41(6):1−5.

    [4] 姜福兴,王平,冯增强,等. 复合型厚煤层“震−冲” 型动力灾害机理、预测与控制[J]. 煤炭学报,2009,34(12):1605−1609. doi: 10.3321/j.issn:0253-9993.2009.12.004

    JIANG Fuxing, WANG Ping, FENG Zengqiang, et al. Mechanism, prediction and control of “rock burst induced by shock bump” kind dynamic accident in composite thickness coal[J]. Journal of China Coal Society,2009,34(12):1605−1609. doi: 10.3321/j.issn:0253-9993.2009.12.004

    [5] 朱建波,马斌文,谢和平,等. 煤矿矿震与冲击地压的区别与联系及矿震扰动诱冲初探[J]. 煤炭学报,2022,47(9):3396−3409.

    ZHU Jianbo, MA Binwen, XIE Heping, et al. Differences and connections between mining seismicity and coal bursts in coal mines and preliminary study on coal bursts induced by mining seismicity[J]. Journal of China Coal Society,2022,47(9):3396−3409.

    [6] 李振雷,何学秋,窦林名. 综放覆岩破断诱发冲击地压的防治方法与实践[J]. 中国矿业大学学报,2018,47(1):162−171.

    LI Zhenlei, HE Xueqiu, DOU Linming. Control measures and practice for rock burst induced by overburden fracture in top-coal caving mining[J]. Journal of China University of Mining & Technology,2018,47(1):162−171.

    [7] 王浩,赵毅鑫,牟宗龙,等. 矿震扰动下采区煤柱应力偏量集中区诱冲机制及防治方法[J]. 中国矿业大学学报,2017,46(6):1202−1210.

    WANG Hao, ZHAO Yixin, MU Zonglong, et al. The mechanism of rockburst in district coal pillar with high deviatoric stress and mining tremors impact and its prevention methods[J]. Journal of China University of Mining & Technology,2017,46(6):1202−1210.

    [8] 高明仕,徐东,贺永亮,等. 厚硬顶板覆岩冲击矿震影响的远近场效应研究[J]. 采矿与安全工程学报,2022,39(2):215−226.

    GAO Mingshi, XU Dong, HE Yongliang, et al. Investigation on the near-far field effect of rock burst subject to the breakage of thick and hard overburden[J]. Journal of Mining & Safety Engineering,2022,39(2):215−226.

    [9] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong, PAN Yishan, JIANG Fuxing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.

    [10] 高瑞. 远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[D]. 徐州:中国矿业大学,2019.

    GAO Rui. The mechanism of ground pressure induced by the breakage of far-field hard strata and the control technology of ground fracturing[D]. Xuzhou:China University of Mining and Technology, 2019.

    [11] 于斌,高瑞,孟祥斌,等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报,2018,37(5):1134−1145.

    YU Bin, GAO Rui, MENG Xiangbin, et al. Near-far strata structure instability and associate strata behaviors in large space and corresponding control technology[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1134−1145.

    [12] 尚晓光,朱斯陶,姜福兴,等. 地面直井水压致裂防控巨厚硬岩运动型矿震试验研究[J]. 煤炭学报,2021,46(S2):639−650.

    SHANG Xiaoguang, ZHU Sitao, JIANG Fuxing, et al. Experimental study on prevention and control of mine earthquake by high pressure water fracturing of huge thick strata in vertical shaft[J]. Journal of China Coal Society,2021,46(S2):639−650.

    [13] 高瑞,于斌,孟祥斌. 工作面过煤柱强矿压显现机理及地面压裂控制研究[J]. 采矿与安全工程学报,2018,35(2):324−331.

    GAO Rui, YU Bin, MENG Xiangbin. Study on the mechanism of strong strata behavior influenced by overlying coal pillar and control technology of ground fracturing[J]. Journal of Mining & Safety Engineering,2018,35(2):324−331.

    [14] 潘俊锋,康红普,闫耀东,等. 顶板“人造解放层” 防治冲击地压方法、机理及应用[J]. 煤炭学报,2023,48(2):636−648.

    PAN Junfeng, KANG Hongpu, YAN Yaodong, et al. The method, mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society,2023,48(2):636−648.

    [15] 梁彦波,程远方,黄娜,等. 煤矿地面直井水压致裂技术防治巨厚岩层动力灾害研究[J]. 矿业研究与开发,2021,41(9):98−102.

    LIANG Yanbo, CHENG Yuanfang, HUANG Na, et al. Study on prevention and control of dynamic disaster of extra-thick rock stratum in coal mine by hydraulic fracturing technology in surface vertical well[J]. Mining Research and Development,2021,41(9):98−102.

    [16] 钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 2版. 徐州:中国矿业大学出版社,2010.
    [17] 姜福兴,刘懿,张益超,等. 采场覆岩的“载荷三带” 结构模型及其在防冲领域的应用[J]. 岩石力学与工程学报,2016,35(12):2398−2408.

    JIANG Fuxing, LIU Yi, ZHANG Yichao, et al. A three-zone structure loading model of overlying strata and its application on rockburst prevention[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2398−2408.

    [18] 张明. 厚硬岩层矿井矿震与冲击复合动力灾害防控研究[D]. 北京:北京科技大学,2017.

    ZHANG Ming. Study on prevention and control of complex dynamic disasters of mine quake and rock burst under hard-thick strata[D]. Beijing:University of Science and Technology Beijing, 2017.

    [19] 许家林,钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报,2000,29(5):463−467. doi: 10.3321/j.issn:1000-1964.2000.05.005

    XU Jialin, QIAN Minggao. Method to distinguish key strata in overburden[J]. Journal of China University of Mining & Technology,2000,29(5):463−467. doi: 10.3321/j.issn:1000-1964.2000.05.005

    [20] 缪协兴,茅献彪,孙振武,等. 采场覆岩中复合关键层的形成条件与判别方法[J]. 中国矿业大学学报,2005,34(5):547−550. doi: 10.3321/j.issn:1000-1964.2005.05.002

    MIAO Xiexing, MAO Xianbiao, SUN Zhenwu, et al. Formation conditions of compound key strata in mining overlayer strata and its discriminance[J]. Journal of China University of Mining & Technology,2005,34(5):547−550. doi: 10.3321/j.issn:1000-1964.2005.05.002

    [21] 朱斯陶,刘金海,姜福兴,等. 我国煤矿顶板运动型矿震及诱发灾害分类、预测与防控[J]. 煤炭学报,2022,47(2):807−816.

    ZHU Sitao, LIU Jinhai, JIANG Fuxing, et al. Classification, prediction, prevention and control of roof movement-type mine earthquakes and induced disasters in China’s coal mines[J]. Journal of China Coal Society,2022,47(2):807−816.

    [22] 蒋金泉,张培鹏,聂礼生,等. 高位硬厚岩层破断规律及其动力响应分析[J]. 岩石力学与工程学报,2014,33(7):1366−1374.

    JIANG Jinquan, ZHANG Peipeng, NIE Lisheng, et al. Fracturing and dynamic response of high and thick stratas of hard rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1366−1374.

    [23]

    KIJKO A, FUNK C W. Space-time interaction amongst clusters of mining induced seismicity[J]. Pure and Applied Geophysics,1996,147(2):277−288. doi: 10.1007/BF00877483

    [24]

    HANKS T C, MCGUIRE R K. The character of high-frequency strong ground motion[J]. The Bulletin of the Seismological Society of America,1981,71(6):2071−2095. doi: 10.1785/BSSA0710062071

    [25] 窦林名,何江,曹安业,等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报,2015,40(7):1469−1476.

    DOU Linming, HE Jiang, CAO Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society,2015,40(7):1469−1476.

    [26] 姜福兴,舒凑先,王存文. 基于应力叠加回采工作面冲击危险性评价[J]. 岩石力学与工程学报,2015,34(12):2428−2435.

    JIANG Fuxing, SHU Couxian, WANG Cunwen. Impact risk appraisal of stope working faces based on stress superimposition[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(12):2428−2435.

    [27] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 爆破安全规程:GB 6722—2014[S]. 北京:中国标准出版社,2015.
    [28] 高明仕,赵一超,温颖远,等. 震源扰动型巷道冲击矿压破坏力能准则及实践[J]. 煤炭学报,2016,41(4):808−814.

    GAO Mingshi, ZHAO Yichao, WEN Yingyuan, et al. Stress and energy criterion of the roadway destruction subjected to disturbance type rock burst and its practice[J]. Journal of China Coal Society,2016,41(4):808−814.

    [29] 杨俊闯,赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用,2019,55(23):7−14,63. doi: 10.3778/j.issn.1002-8331.1908-0347

    YANG Junchuang, ZHAO Chao. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications,2019,55(23):7−14,63. doi: 10.3778/j.issn.1002-8331.1908-0347

    [30] 钟志峰,李明辉,张艳. 机器学习中自适应k值的k均值算法改进[J]. 计算机工程与设计,2021,42(1):136−141.

    ZHONG Zhifeng, LI Minghui, ZHANG Yan. Improved k-means clustering algorithm for adaptive k value in machine learning[J]. Computer Engineering and Design,2021,42(1):136−141.

图(14)  /  表(6)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  29
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-08-17
  • 录用日期:  2024-06-10
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回
    Baidu
    map