矿井岩溶热储三维地质建模及地热资源潜力评价

张源, 万志军, 胡淞博, 王朱亭, 张波, 赵东

张源,万志军,胡淞博,等. 矿井岩溶热储三维地质建模及地热资源潜力评价[J]. 煤炭学报,2024,49(8):3571−3579. DOI: 10.13225/j.cnki.jccs.2023.1034
引用本文: 张源,万志军,胡淞博,等. 矿井岩溶热储三维地质建模及地热资源潜力评价[J]. 煤炭学报,2024,49(8):3571−3579. DOI: 10.13225/j.cnki.jccs.2023.1034
ZHANG Yuan,WAN Zhijun,HU Songbo,et al. 3D geological modeling of mine karst geothermal reservoir and geothermal resources evaluation[J]. Journal of China Coal Society,2024,49(8):3571−3579. DOI: 10.13225/j.cnki.jccs.2023.1034
Citation: ZHANG Yuan,WAN Zhijun,HU Songbo,et al. 3D geological modeling of mine karst geothermal reservoir and geothermal resources evaluation[J]. Journal of China Coal Society,2024,49(8):3571−3579. DOI: 10.13225/j.cnki.jccs.2023.1034

矿井岩溶热储三维地质建模及地热资源潜力评价

基金项目: 国家自然科学基金资助项目(52074266)
详细信息
    作者简介:

    张 源(1985—),男,安徽阜阳人,副教授,博士。E-mail: 5469@cumt.edu.cn

  • 中图分类号: P314; TK529; TD989

3D geological modeling of mine karst geothermal reservoir and geothermal resources evaluation

  • 摘要:

    传统热储体积法适用于大尺度区域的地热资源量评价,用于矿井地热资源量评价时误差较大。在分析平顶山矿区“源、通、储、盖、流体”地热系统特征的基础上,建立了矿区地热成因概念模型。以平煤十矿井田为主要研究区,基于区内地热地质条件和地面、井下钻孔资料,采用地下水模型系统(Groundwater Modeling System, GMS)软件建立了研究区内地层的三维地质模型,呈现了寒武系碳酸盐岩地层及覆岩的展布情况,并对寒武系碳酸盐岩地层空间进行了数字化。提出了用于矿井地热资源评价的积分式热储体积法,采用该方法对研究区内寒武系岩溶热储静态资源量进行了估算,并评价了热储的动态资源量,得出了热储层地热资源量与地热水位标高的关系曲线。对研究区内寒武系岩溶地热水进行了水质全分析,评价了地热水的腐蚀性和结垢性。结果显示,研究区内寒武系碳酸盐岩(灰岩)层为岩溶热储层,热量主要来自寒武系朱砂洞组以深的高温岩体;地表大气降水经寒武系灰岩露头和矿区周缘深大断裂进入深部岩体,沿途被加热后储存于寒武系灰岩地层中,并持续接受深部基岩热量传输,形成水热型岩溶热储;寒武系岩溶热水静态资源量为76.8亿m3,蕴含热量1.19×1018 J;岩石中蕴含热量为3.25×1018 J;地热资源总量为4.44×1018 J;地热可采资源量为6.66×1017 J,折合标煤22.7 Mt;寒武系岩溶热水具有轻微腐蚀性,结垢性为轻微—中等,流经金属管道和容器需要做防腐和防垢处理。

    Abstract:

    The traditional geothermal reservoir volume method is suitable for the evaluation of geothermal resources in large-scale regions, but there is a significant error when it is used for the evaluation of mine geothermal resources. On the basis of analyzing the characteristics of the geothermal system of the Cambrian karst geothermal reservoir, i.e., heat sources, fluid channels, reservoirs, caprocks and the heat fluid in the Pingdingshan mining area, a conceptual model of geothermal genesis in the Pingdingshan coalfield was established. Based on the geothermal geological conditions and drilling data ground and underground in No.10 Coal Mine of Pingdingshan Tianan Coal Mining Co., LTD., a three-dimensional geological model of the strata in the study area was established using Groundwater Modeling System software. The distribution of Cambrian karst strata and its overburden strata was displayed, and the Cambrian karst strata space was gridded and digitized. The integrated geothermal reservoir volume method for evaluating geothermal resources in mines was proposed and used to estimate the static resource quantity of the Cambrian karst geothermal reservoir in the study area, and the dynamic resource quantity of the geothermal reservoir was also evaluated. The relationship curve between the geothermal reservoir resource quantity and water level elevation was obtained. A complete water quality analysis was conducted on the karst geothermal water in the study area, and the corrosiveness and scaling properties of the geothermal water were evaluated. The results show that the Cambrian carbonate strata in the study area are the karst geothermal reservoir, and the heat mainly comes from high-temperature rock mass deep in the Cambrian Zhushadong Formation; surface atmospheric precipitation enters the deep rock mass through Cambrian limestone outcrops and deep faults around the mining area, and is heated along the way and stored in Cambrian limestone, after which the water continue to receive the heat from deep bedrock and then forms a hydrothermal karst geothermal reservoir; the static hot water resource of Cambrian karst strata in the study area is 7.68 billion m3, containing heat of 1.19×1018 J; the heat contained in the rock is 3.25×1018 J, with a total geothermal resource of 4.44×1018 J; the recoverable geothermal resources are 6.66×1017 J, equivalent to 22.7 million tons of standard coal; the Cambrian karst hot water has slight corrosiveness, with a slight to moderate degree of scaling. Corrosion and scale prevention treatments are required for metal pipelines and containers of the geothermal water.

  • 图  1   研究区范围示意

    Figure  1.   Diagram of study area location

    图  2   平顶山矿区地热成因概念模型(据文献[28]修改)

    Figure  2.   Geothermal reservoir origin conceptual model of Pingdingshan mining area(Modified from Reference [28])

    图  3   热储层和盖层三维模型

    Figure  3.   Three-dimensional model of strata and geothermal reservoir

    图  4   热储层不同水位线侧视

    Figure  4.   The side view of different water level line in geothermal reservoir

    图  5   地热(水)资源量随水位变化情况

    Figure  5.   Geothermal(water) resource changes with water level

    表  1   研究区地层

    Table  1   Strata of study area

    地层单位 厚度/m 岩性
    第四系 0~320 由黄土、黏土、砂夹卵石和
    钙质结核组成
    二叠系 石千峰组 356 主要岩层为砂岩、砂质泥岩
    上石盒子组 100~150 主要岩层为砂岩
    421~701 陆相含煤岩系,含煤64层
    下石盒子组 79.5~125.0 陆相杂色岩系,含有煤线
    石炭系 山西组 37~54 过渡相含煤岩系,含煤7层,己15、
    16、17为主要可采煤层
    太原组 30~82 海陆交互相含煤岩系,含煤17层,
    灰岩7层
    本溪组 2~20 以铝土泥岩为主
    寒武系 崮山组 68 浅海相碳酸盐岩岩系
    张夏组 56~124 浅海相碳酸盐岩岩系
    徐庄组 25~166 浅海相碳酸盐岩岩系
    毛庄组 108~153 浅海相灰岩系
    馒头组 45~147 浅海相泥钙质灰岩
    朱砂洞组 108 浅海相碳酸盐岩岩系
    辛集组 33 滨海—浅海相碎屑岩岩系
    下载: 导出CSV

    表  2   热储空间数据库部分数据

    Table  2   Partial data of thermal storage cell database

    节点序号 顶界面标高/m 节点单元厚度/m
    108724 −780.41 519.59
    108725 −785.78 514.22
    108726 −790.61 509.39
    108727 −795.28 504.72
    108728 −800.25 499.75
    108729 −805.84 494.16
    108730 −812.27 487.73
    108731 −819.55 480.45
    108732 −827.12 472.88
    108733 −834.93 465.07
    108734 −842.13 457.87
    108735 −848.85 451.15
    108736 −854.33 445.67
    下载: 导出CSV

    表  3   热储静态资源量计算参数

    Table  3   Calculating parameters of static geothermal resources

    计算参数 数值
    热储平均温度/℃ 52
    当地年平均气温/℃ 14
    热储孔隙率/% 18
    热储岩石密度/( kg·m−3) 2 720
    热储岩石比热/( J·(kg·℃)−1) 900
    地热水密度/( kg·m−3) 1 000
    地热水比热/( J·(kg·℃)−1) 4 200
    弹性释水系数/Pa−1 0.000 4
    下载: 导出CSV

    表  4   寒武系灰岩水质全分析结果

    Table  4   Analysis results of water quality in Cambrian system limestone

    分析项目 质量浓度/
    (mg·L–1)
    摩尔浓度/
    (mmol·L–1)
    占比/%
    阳离子 Ca2+ 57.84 1.443 15.74
    Mg2+ 29.90 1.230 13.41
    Fe2+ 0 0 0
    Fe3+ 0 0 0
    NH4+ 0.20 0.011 0.12
    K++Na+ 149.16 6.485 70.73
    阴离子 Cl 66.22 1.868 18.64
    SO42 174.73 1.819 18.15
    HCO3 386.60 6.336 63.21
    CO32 0 0 0
    NO2 0 0 0
    NO3 0 0 0
    其他 总硬度 267.54
    pH值 7.50
    可溶性SiO2 20.00
    总溶解固形物 699.00
    下载: 导出CSV
  • [1] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):449−450,134,451−459.

    WANG Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4):449−450, 134, 451−459.

    [2] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review,2012,30(32):25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    [3] 袁亮,张通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(6):2131−2139.

    YUAN Liang, ZHANG Tong, ZHANG Qinghe, et al. Construction of green, low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society,2022,47(6):2131−2139.

    [4] 蔡美峰,马明辉,潘继良,等. 矿产与地热资源共采模式研究现状及展望[J]. 工程科学学报,2022,44(10):1669−1681. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210006

    CAI Meifeng, MA Minghui, PAN Jiliang, et al. Co-mining of mineral and geothermal resources:A state-of-the-art review and future perspectives[J]. Chinese Journal of Engineering,2022,44(10):1669−1681. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210006

    [5] 万志军,毕世科,张源,等. 煤−热共采的理论与技术框架[J]. 煤炭学报,2018,43(8):2099−2106.

    WAN Zhijun, BI Shike, ZHANG Yuan, et al. Framework of the theory and technology for simultaneous extraction of coal and geothermal resources[J]. Journal of China Coal Society,2018,43(8):2099−2106.

    [6] 杨晓杰,韩巧云,田弋弘,等. 徐州三河尖矿深井高温热害机制研究[J]. 岩石力学与工程学报,2013,32(12):2447−2454.

    YANG Xiaojie, HAN Qiaoyun, TIAN Yihong, et al. Mechanism of high-temperature heat-hazard at sanhejian coal mine, Xuzhou[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(12):2447−2454.

    [7] 毕世科,万志军,张洪伟,等. 唐口煤矿地热资源开发及利用研究[J]. 煤炭科学技术,2018,46(4):208−214.

    BI Shike, WAN Zhijun, ZHANG Hongwei, et al. Research on development and utilization of geothermal resources in Tangkou Coal Mine[J]. Coal Science and Technology,2018,46(4):208−214.

    [8] 万志军,张源,师鹏,等. 煤−热共采模式下地热水非常规开采数值模拟研究[J]. 煤炭学报,2023,48(3):1115−1125.

    WAN Zhijun, ZHANG Yuan, SHI Peng, et al. Numerical simulation on unconventional mining of geothermal water in coal-heat co-mining mode[J]. Journal of China Coal Society,2023,48(3):1115−1125.

    [9] 朱喜,王贵玲,马峰,等. 雄安新区地热资源潜力评价[J]. 地球科学,2023,48(3):1093−1106.

    ZHU Xi, WANG Guiling, MA Feng, et al. Evaluation of geothermal resources of the Xiongan new area[J]. Earth Science,2023,48(3):1093−1106.

    [10] 谢娜,喻生波,丁宏伟,等. 甘肃省地热资源赋存特征及潜力评价[J]. 中国地质,2020,47(6):1804−1812. doi: 10.12029/gc20200616

    XIE Na, YU Shengbo, DING Hongwei, et al. Occurrence features of geothermal resources and geothermal potential assessment in Gansu Province[J]. Geology in China,2020,47(6):1804−1812. doi: 10.12029/gc20200616

    [11] 赵季初,康凤新. 山东孤岛潜山凸起区裂隙岩溶热储资源综合评价与发电潜力研究[J]. 中国地质调查,2019,6(1):10−16.

    ZHAO Jichu, KANG Fengxin. Comprehensive evaluation of geothermal resources and generating potential of fissure karstic geothermal reserovir at Gudao buried hill uplift area in Shandong Province[J]. Geological Survey of China,2019,6(1):10−16.

    [12] 韩军,刘祜,甄珍,等. 蒙特卡罗法在地热资源评价中的应用[J]. 地质学刊,2022,46(2):158−164. doi: 10.3969/j.issn.1674-3636.2022.02.006

    HAN Jun, LIU Hu, ZHEN Zhen, et al. Application of Monte Carlo method in geothermal resource assessment[J]. Journal of Geology,2022,46(2):158−164. doi: 10.3969/j.issn.1674-3636.2022.02.006

    [13] 饶松,肖红平,王朱亭,等. 渤海湾盆地馆陶组热储特征与地热资源评价[J]. 天然气工业,2023,43(5):141−152.

    RAO Song, XIAO Hongping, WANG Zhuting, et al. Geothermal reservoir characteristics and geothermal resource evaluation of Guantao Formation in the Bohai Bay Basin[J]. Natural Gas Industry,2023,43(5):141−152.

    [14]

    YANG Y B, CAO Q, FANG C H, et al. Characteristics of geothermal field and evaluation of geothermal resource potential in the Yingjiang Basin[J]. Energy Geoscience,2023,4(4):100210. doi: 10.1016/j.engeos.2023.100210

    [15]

    ELMASRY A, MOHALLEL S A, MADANI A, et al. Geothermal groundwater study and its energetic potential assessment in Abu Gharadig Basin, North Western Desert, Egypt[J]. Journal of African Earth Sciences,2023,202:104925. doi: 10.1016/j.jafrearsci.2023.104925

    [16]

    BROWN C S. Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models[J]. Geothermics,2022,105:102503. doi: 10.1016/j.geothermics.2022.102503

    [17]

    SANTILANO A, DONATO A, GALGARO A, et al. An integrated 3D approach to assess the geothermal heat-exchange potential:The case study of Western Sicily (southern Italy)[J]. Renewable Energy,2016,97:611−624. doi: 10.1016/j.renene.2016.05.072

    [18] 赵杰,郭清海. 基于三维地质建模的地热资源潜力评价:以施甸地热区为例[J]. 地球科学,2023,48(3):1107−1117.

    ZHAO Jie, GUO Qinghai. Geothermal resources evaluation based on 3D geological modeling:the case of Shidian geothermal area[J]. Earth Science,2023,48(3):1107−1117.

    [19] 张禄权,左银辉,孙义高,等. 川中地区栖霞—茅口组地热资源评价探讨[J]. 沉积与特提斯地质,2023,43(2):261−270.

    ZHANG Luquan, ZUO Yinhui, SUN Yigao, et al. Geothermal resource evaluation of the middle Permian Qixia−Maokou Formation in the Central Sichuan Basin, China[J]. Sedimentary Geology and Tethyan Geology,2023,43(2):261−270.

    [20] 李延河,万志军,于振子,等. 平顶山矿区地热地质条件及其成因分析[J]. 地球物理学进展,2023,38(2):551−561. doi: 10.6038/pg2023GG0206

    LI Yanhe, WAN Zhijun, YU Zhenzi, et al. Analysis of geothermal geological conditions and its genesis in Pingdingshan mining area[J]. Progress in Geophysics,2023,38(2):551−561. doi: 10.6038/pg2023GG0206

    [21] 高军伟. 平顶山矿区深部地热危害调查及对策[J]. 能源与环保,2018,40(7):20−23.

    GAO Junwei. Investigation of geothermal disaster in Pingdingshan mining area and its countermeasures[J]. China Energy and Environmental Protection,2018,40(7):20−23.

    [22] 宋岑,吴财芳,刘君. 平顶山矿区主采煤层控气地质构造特征研究[J]. 能源技术与管理,2009,34(6):9−10,37. doi: 10.3969/j.issn.1672-9943.2009.06.004

    SONG Cen, WU Caifang, LIU Jun. Research on characteristics of gas-control by geological structure in main mining coal seam in Pingdingshan Mine[J]. Energy Technology and Management,2009,34(6):9−10,37. doi: 10.3969/j.issn.1672-9943.2009.06.004

    [23] 李铁军,孟祥瑞. 河南平顶山北部地区地热概念模型研究[J]. 矿产与地质,2022,36(2):368−373,379.

    LI Tiejun, MENG Xiangrui. Research on geothermal conceptual model in the northern area of Pingdingshan, Henan[J]. Mineral Resources and Geology,2022,36(2):368−373,379.

    [24] 谢和平,周宏伟,薛东杰,等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报,2012,37(4):535−542.

    XIE Heping, ZHOU Hongwei, XUE Dongjie, et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society,2012,37(4):535−542.

    [25] 胡盛,李科花,陈良立. 平顶山煤田层序地层格架的建立及煤层分布规律研究[J]. 中国井矿盐,2014,45(5):20−24. doi: 10.3969/j.issn.1001-0335.2014.05.008

    HU Sheng, LI Kehua, CHEN Liangli. The establishment of the sequence stratigraphic sramework and the distribution regularity of coal seam in Pingdingshan Coalfield[J]. China Well and Rock Salt,2014,45(5):20−24. doi: 10.3969/j.issn.1001-0335.2014.05.008

    [26] 张发旺,王贵玲,侯新伟,等. 地下水循环对围岩温度场的影响及地热资源形成分析——以平顶山矿区为例[J]. 地球学报,2000,21(2):142−146. doi: 10.3321/j.issn:1006-3021.2000.02.006

    ZHANG Fawang, WANG Guiling, HOU Xinwei, et al. An analysis of the formation of geothermal resources and the effects of groundwater circulation on the wall rock temperature field—Taking the Pingdingshan mining field as an example[J]. Acta Geoscientica Sinica,2000,21(2):142−146. doi: 10.3321/j.issn:1006-3021.2000.02.006

    [27] 李腾超,王书宏,寇正卫. 河南省地温场分布规律及成因机制分析[J]. 城市地质,2020,15(2):194−200. doi: 10.3969/j.issn.1007-1903.2020.02.012

    LI Tengchao, WANG Shuhong, KOU Zhengwei. Analysis of the distribution and formation mechanism of the geothermal field in Henan Province[J]. Urban Geology,2020,15(2):194−200. doi: 10.3969/j.issn.1007-1903.2020.02.012

    [28]

    YU K, JU Y W, WAN Z J, et al. Paleoenvironment, provenance, and hydrocarbon potential of Lower Permian coal-bearing source rocks in the Southern North China Basin:a case study of the Pingdingshan Coalfield[J]. ACS Earth and Space Chemistry,2022,6(5):1299−1310. doi: 10.1021/acsearthspacechem.2c00003

    [29] 陈莹,王攀科,吴烨,等. 河南兰考地区地热回灌影响因素分析及对策[J]. 钻探工程,2022,49(6):146−152. doi: 10.12143/j.ztgc.2022.06.020

    CHEN Ying, WANG Panke, WU Ye, et al. Analysis and countermeasures on influencing factors of geothermal well reinjection in Lankao, Henan Province[J]. Drilling Engineering,2022,49(6):146−152. doi: 10.12143/j.ztgc.2022.06.020

    [30] 邓嵩,沈鑫,刘璐,等. 地热井系统腐蚀与防护的研究进展[J]. 材料导报,2021,35(21):21178−21184.

    DENG Song, SHEN Xin, LIU Lu, et al. Research progress in corrosion and protection of geothermal well system[J]. Materials Reports,2021,35(21):21178−21184.

    [31] 中华人民共和国住房和城乡建设部. 城镇地热供热工程技术规程:CJJ 138—2010[S]. 北京:中国建筑工业出版社,2010.
    [32] 李义曼,庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展,2018,6(4):274−281. doi: 10.3969/j.issn.2095-560X.2018.04.004

    LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Energy,2018,6(4):274−281. doi: 10.3969/j.issn.2095-560X.2018.04.004

    [33] 袁兴成,张云辉,王鹰,等. 鲜水河断裂带地热水化学特征及结垢趋势分析[J]. 沉积与特提斯地质,2023,43(2):357−372.

    YUAN Xingcheng, ZHANG Yunhui, WANG Ying, et al. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone[J]. Sedimentary Geology and Tethyan Geology,2023,43(2):357−372.

    [34] 中华人民共和国自然资源部. 地热资源评价方法及估算规程:DZ/T 0331—2020[S].
图(5)  /  表(4)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  7
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 修回日期:  2023-10-17
  • 录用日期:  2024-06-21
  • 网络出版日期:  2024-08-20
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回
    Baidu
    map