基于UVA与植被指数的排土场DEM模型构建关键技术

宫传刚1,2,卞正富1,2,卞和方1,2,雷少刚1,2,黄 赳1,2,张周爱3,郭海桥3,张 浩3

(1.中国矿业大学 国土资源研究所,江苏 徐州 221116; 2.矿山生态修复教育部工程研究中心,江苏 徐州 221116; 3.神华宝日希勒能源有限公司,内蒙古 呼伦贝尔 021500)

摘 要:露天煤矿排土场具有地形复杂、堆存松散、异质性强等特点,长期存在整体非均匀沉降、边坡失稳变形、蠕动等地质环境问题。因此,掌握排土场精确地形数据是保证其地质稳定性的基础,然而传统地形测量技术难以满足高精度需求;无人机低空摄影测量所获地形数据虽分辨率高,但受地表植被影响导致垂直精度不足。针对这一问题,提出基于可见光植被指数-植被高度回归模型的地形数据获取方法,即利用回归模型对无人机摄影测量获取的地表高程值进行修正以提高垂直精度。以宝日希勒露天煤矿外排土场北坡为研究对象,利用无人机摄影测量技术获取研究区初始地形和正射影像数据,再基于可见光建立植被指数-植被高度回归模型对初始高程值进行优化。实验表明:可见光植被指数与植被高度具有较好的相关关系,基于不同波段建立的植被指数对植被高度的估算精度存在较大差异,其中利用红绿蓝3个波段建立的植被指数EXG模型(R2=0.952)和RGBVI模型(R2=0.95)具有较高的拟合精度。结合可见光植被指数-植被高度修正模型可提高无人机摄影测量获取的地形数据精度,研究区检查点均方根误差由0.111 m减小到0.045 m。与传统GPS RTK地形测量技术相比,此方法在地形复杂处精度更高,在中小尺度上获取高精度地形数据具有较大优势。

关键词:排土场;植被指数;露天煤矿;地形测量;无人机;摄影测量技术

露天煤矿开采会形成外排土场,由于持续的人工干扰与自然侵蚀,其地形复杂且不断变化,掌握外排土场地形数据是对其坡体稳定性评价、侵蚀沟信息提取、精细水文网识别、水土流失控制和植被恢复监测的重要保障,为矿山生态修复提供了基础数据支撑[1-3]。然而,采用传统手段进行地形测量更新慢、成本高,难以满足较高需求[4-5]

随着无人机(Unmanned Aerial Vehicle,UAV)与传感器的不断发展,基于无人机平台的低空(100~1 000 m)/超低空(<100 m)摄影测量技术已显示出独特优越性。无人机摄影测量技术结合了无人机驾驶飞行器技术、遥感传感器技术、遥测遥控技术、通信技术、POS定位定姿态技术、GPS差分定位技术和遥感应用技术,具有系统灵活、起降方便、成本低、质量高、自动化和智能化等特点[6-8],在快速获取小区域、飞行困难地区和复杂地形区域高分辨率影像方面具有明显优势[9]。目前,无人机摄影测量技术已被广泛用于地形测量[10-13],环境监测[14-15],农作物信息提取及应用[16-17],森林植被信息提取[18-19],湿地、水源地信息提取[20-21],灾害应急救援[22-24],电力巡视[25],文物保护[26],建筑物风险评估[27]等方面,其空间信息密度与精度可达机载雷达水平[28-29]

然而,基于可见光立体像对匹配获取的地形数据大多未考虑植被与其他地物对高程的影响,因此在高精度地形提取方面难以保证垂直精度。针对这一问题,在植被类型单一且无建筑物干扰区,可以利用可见光植被指数间接反映植被高度,利用植被指数-植被高度回归模型剔除植被对地形的影响,从而获得真实地形。

以宝日希勒露天煤矿外排土场北坡为研究对象,采用旋翼无人机平台与地面GPS RTK系统,构建外排土场地形测量作业平台。建立可见光植被指数-植被高度修正模型对无人机摄影测量地形进行修正。最后用检查点对测量结果进行精度检验,同时与GPS RTK地形测量数据进行比较分析,对该测量方法的实用性和不足进行思考和研究,可为以后露天煤矿或其他复杂地形的测量提供参考。

1 研究区概况

宝日希勒露天矿位于内蒙古自治区呼伦贝尔市陈巴尔虎旗宝日希勒镇境内,地理坐标为东经:119.689°~119.761°,北纬:49.364°~49.412°。研究区位于宝日希勒露天煤矿外排土场北坡(图1),总面积约2.2 km2,海拔为620~720 m,坡面角度为0°~30°,区内土地类型以草地与裸土地为主,植被以多裂叶荆芥(Schizonepeta multifida)、贝加尔针茅(Stipa baicalensis)和扁蓿豆(Pocokia ruthenica)为主。由于坡面起伏、土质松散,在雨水冲刷下形成多条侵蚀沟,使得坡面形态复杂。

2 数据采集及预处理

数据采集空中飞行单元采用旋翼无人机飞行平台;测量作业单元由机载数码相机、机载数据采集存储子系统组成;地面控制单元由地面站和数传电台组成;像控点测量单元、植被实测量单元由GPS RTK和钢尺组成。

图1 研究区地理位置示意
Fig.1 Location map of study area

2.1 像控点、检查点和植被实测点量测

无人机上搭载的GPS精度较低,因此需对航拍添加地面像控点以及POS差分数据以保证精度[30]。此外,在研究区布置更多的控制点(检查点),可以对解算的数据进行精度检验。像控点按照GB/T 7931—2008《1∶500,1∶1 000,1∶2 000 地形图航空摄影测量外业规范》采用内业人员设计、外业人员布设的方式进行。

研究区共布设像控点19个,检查点8个,植被高度实测点43个(图1)。像控点均布设在无植被覆盖区且保证航向及旁向6片重叠范围内可见;检查点与植被高度实测点布置在坡顶、坡脚、平台及坡面等区域,其中1个检查点位于裸土地上、7个检查点位于植被区;植被高度实测点采用5点取样法在10 cm×10 cm样方内测得。所有点位置信息均采用GPS RTK进行测量,测量模式为“地面控制点模式”,单点测量180次取平均值。

2.2 影像获取

研究区东西长约2 400 m,南北宽约900 m,在设计航线时需根据航向重叠、旁向重叠、地面分辨率的要求来设定航高以及拍摄间隔,再由航高和相机参数来确定航线地面最低点分辨率[31]。无人机及相机等参数见表1,飞行中由GPS飞行控制系统控制相机快门进行定点曝光,相机设置为固定无穷远对焦、固定光圈以保证统一物镜畸变参数。除此之外,由于研究区地势起伏大,为减小影像畸变,重点区域采用倾斜拍摄与垂直拍摄相结合的影像获取方式,充分利用侧视影像来获取地物的侧面纹理信息,保证整体精度。实验数据采集于2017-08-30,天气晴朗无云,微风,共采集航片1 282张。

表1 无人机及飞行参数
Table 1 UAV and ground survey details

飞行参数型号及数值传感器FC300X_3.6_4000x3000(RGB)航线相对高度/m110航向重叠度/%80旁向重叠度/%75采集照片数量1 282地面像控点数量19地面检查点数量8影像分辨率/(cm·pix-1)5

2.3 数据处理

将外业采集影像与像控点导入Pix4D Mapper,在软件中对相机参数进行检校,并将每个像控点转刺到5~8张影像上。利用软件进行空中三角测量与密集匹配[32]、SfM摄影测量处理、多视图三维立体重建和几何模型建立等处理,进而生成高精度三维点云数据和数字地表模型(Digital Surface Model,DSM),再对影像进行数字微分纠正、拼接、镶嵌等处理,可获得整个研究区数字正射影像(Digital Orthophoto Map,DOM)。其中,DSM数据为包含地面植被高度信息的地面高程模型,DOM数据为含有RGB波段的正射影像(图2),其空间分辨率均为5 cm。

3 可见光植被指数与地形修正模型

由于Pix4D Mapper解算获得的DSM数据中高程值包含了地表植被高度,为获取研究区真实地形(DEM数据),需建立可见光植被指数-植被高度模型修正DSM数据。

3.1 可见光植被指数-植被高度相关性分析

植被指数是地物反射波段间的不同组合方式,目前已公开发表的植被指数模型超过150种[33],其中基于红光、近红外波段反射率差异构建的植被指数NDVI得到广泛应用。同样,绿色植被在可见光波段的光谱差异性也有大量研究,其部分常见可见光植被指数及其变形式见表2。

图2 研究区数字正射影像与数字地表模型示意
Fig.2 Orthophotomap and DSM data of study area

表2 主要可见光植被指数
Table 2 Major vegetation indices of visible bands

植被指数名称计算公式绿红比值指数[34](Green-Red Ratio Index,GRRI)ρgreenρred绿蓝比值指数[35](Green-Blue Ratio Index,GBRI)ρgreenρblue归一化绿红差异指数[36](Normalized Green-Red Difference Index,NGRDI)ρgreen-ρredρgreen+ρred归一化绿蓝差异指数[37](Normalized Green-Blue Difference Index,NGBDI)ρgreen-ρblueρgreen+ρblue超绿指数[38](Excess Green,EXG)2ρgreen-ρred-ρblue红绿蓝植被指数[39](Red Green Blue Vegetation Index,RGBVI)ρ2green-(ρredρblue)ρ2green+(ρredρblue)

注:ρgreen,ρred,ρblue分别为无人机影像在绿、红、蓝波段的反射率。

表2中,为了使所有植被指数与植被高度呈正相关关系,取原文献中GRRI与GBRI植被指数的倒数。利用表2所示公式分别计算出研究区地面实测样本的6种植被指数,利用SPSS建立植被指数-植被高度相关性模型,其相关性见表3。由表3可知,研究区植被高度与植被指数均呈正相关关系,其中植被高度与RGBVI的相关性系数最高(R2=0.942),其次为EXG(R2=0.908),最低的为GRRI(R2=0.531)。在所列植被指数之间,GRRI与NGRDI,GBRI 与NGBDI相关性较高,绝对值均大于0.99。对比发现,与植被高度相关性较高的植被指数均由红、绿、蓝3个波段通过不同组合方式计算所得,如RGBVI和EXG。

表3 植被指数与植被高度的相关系数
Table 3 Correlation coefficient between vegetation index and vegetation height

植被参数植被高度GRRIGBRINGRDINGBDI EXGRGBVI植被高度10.5310.855∗∗0.5370.857∗∗0.908∗∗0.942∗∗GRRI10.1710.999∗∗0.1610.5200.525GBRI10.1820.997∗∗0.899∗∗0.926∗∗NGRDI10.1720.5320.535NGBDI10.901∗∗0.925∗∗EXG10.979∗∗RGBVI1

注:**表示在置信度(双测)为0.01时显著相关。

利用植被高度实测样本(随机布置在草地和裸土地上,共43个)分为两部分,随机选择70%(30个)用于建立植被指数-植被高度回归模型,30%(13个)用于检验。利用SPSS回归分析模块拟合得到植被高度与各种植被指数之间最佳拟合曲线为线性拟合。统计回归模型的相关性系数R2和检验样本的平均绝对误差(Mean Absolute Deviation,MAD)及均方根误差(Root Mean Squared Error,RMSE),公式如下,统计结果见表4。

(1)

(2)

式中,E为模型预测值与真实值的差值;n为验证样本数。

表4 植被指数-植被高度回归模型与精度检验
Table 4 Vegetation index-vegetation height regression model and precision test

植被指数VI模型R2MAD/mRMSE/mGRRIy=0.757x-0.6650.2740.075 0.097GBRIy=0.511x-0.4620.7670.046 0.056NGRDIy=1.796x+0.0730.2170.080 0.102NGBDIy=1.424x+0.0260.7890.040 0.053EXGy=0.007x+0.0230.9520.020 0.025RGBVIy=1.280x+0.0220.9500.022 0.026

由表4可知,不同植被指数—植被高度回归模型的R2,MAD,RMSE表现出明显差异。其中,R2最高的为EXG模型(R2=0.952),其次为RGBVI模型(R2=0.950),最低的为NGRDI模型(R2=0.217)。验证样本中MAD和RMSE最小值为EXG模型(MAD=0.02 m,RMSE=0.025 m),其次为RGBVI模型(MAD=0.02 m,RMSE=0.025 m),最大值为NGRDI模型(MAD=0.08 m,RMSE=0.102 m)。

综合分析3种评价指标及3.2节中植被指数与植被高度相关性分析结果可知,EXG模型与RGBVI模型能有效的反映研究区植被高度。下面以RGBVI模型为例估算研究区植被高度,进而得到研究区修正后数字高程模型(Digital Elevation Model,DEM)。

3.2 地形修正模型

利用RGBVI模型指数估算得到研究区内植被高度分部如图3所示。

由图3可知,研究区内裸土地(植被高度为0)面积占总面积32.7%,植被高度低于15 cm区域面积占总面积60.9%,植被高度高于15 cm区域面积占总面积6.4%。整体来看研究区东部比西部植被高度高,坡顶和平台比坡面高度高。图3中A,B,C,D为研究区4块典型区域,其植被高度估算结果细节如图4所示。

由图4可知,在研究区不同区域,植被高度对地形的影响程度与实际情况基本一致。区域A位于排土场坡顶,植被高度差异性明显,部分区域植被高度较高,对地形测量影响明显。区域B接近坡脚,内有冲蚀沟发育,地形起伏较大。区域C位于坡顶与边坡过渡区,内有防护林与少量人工建筑,植被高度差异性大。区域D位于坡脚,区内有公路、花坛等地物,其植被高度为0且轮廓非常清晰。

图3 基于RGBVI的研究区植被高度估算结果
Fig.3 Estimation results of vegetation height in the study area based on RGBVI model

图4 研究区植被高度估算结果细节特征
Fig.4 Detail characteristics of vegetation height estimation results

根据以上分析,可建立地形修正模型以除去研究区内植被高度对地形的影响。假设无人机摄影测量所获DSM数据任意点O(x,y)高程值为H0,利用植被指数-植被高度修正模型估算该点植被高度为h0,则修正后该点真实坐标为

A′(x,y,z)=A(x,y,H0-h0)

4 结果与分析

4.1 影像精度评估

为确定修正后地形数据的准确性,采用像控点误差统计和检查点验证2种方式进行精度评估。像控点误差统计见表6,检查点高程值与影像解算对应高程比较见表7。

由表6,7可知,所有像控点和检查点均有效,未出现异常值。其中像控点投影误差均控制在0.5个像素之内,精度满足设计要求;修正后影像高程大多小于修正前,点CheckP-5处为裸土地,植被指数为0,修正前后影像高程值不变。

表6 像控点误差统计
Table 6 Photo-control-points error statistics

点号高程误差/m投影误差/像素校准影像数GCP-01-0.0230.4817GCP-020.0210.4275GCP-030.0390.4435GCP-040.0190.3695GCP-05-0.0240.1455GCP-060.0260.2635GCP-070.0180.3067GCP-080.0220.2655GCP-090.0140.1945GCP-10-0.0060.4745GCP-110.0190.4385GCP-12-0.0180.4575GCP-130.0190.3155GCP-14-0.0570.3625GCP-15-0.0610.2166GCP-16-0.0770.4795GCP-17-0.0250.4778GCP-180.0210.4708GCP-190.0210.3498

表7 检查点与解算点高程比较
Table 7 Comparison between checkpoints and solution points elevation

检查点号修正前影像高程/m修正后影像高程/m检查点高程/mCheckP-1651.110651.014651.038CheckP-2625.712625.614625.591CheckP-3687.992687.771687.861CheckP-4631.266631.254631.221CheckP-5716.697716.697716.667CheckP-6697.706697.614697.631CheckP-7720.503720.411720.352CheckP-8698.755698.547698.579

使用均方根误差式(式(2))对检查点的可靠性进行评估[40],检查点均方根误差由修正前的0.111 m变为0.045 m,精度显著提高,根据《数字航空摄影测量空中三角测量规范》(GB/T 23236—2009)的要求,测量结果符合1∶500地形数据制作要求。

4.2 基于GPS RTK的DEM数据精度验证

为进一步评估修正后无人机摄影测量地形数据的可靠性,将修正后地形数据与同期使用GPS RTK所测地形数据进行比较和分析(图5)。由于无人机摄影测量数据由点云生成,而GPS RTK地形测量数据由多点插值所得,因此无人机摄影测量(图5(a))解算数据比已有GPS RTK地形测量数据(图5(b))更加精细,在测量复杂地形时无人机摄影测量体现出明显优势。同时,将两组DEM数据相重叠(图5(c))可知,两组数据在不同区域呈现出不同高程值,下面进行具体论述。

图5 研究区DEM数据比较
Fig.5 DEM data comparison in the study area

利用ArcGIS在研究区内取1 000个随机点(图5(c)),随机点处地面植被高度见表8。分别将修正后无人机解算高程数据和GPS RTK地形测量高程数据提取至随机点,建立同名点高程属性对照表,得出两组数据同名点高程差。除去异常值后,统计随机点高程差正态分布直方图如图6所示。

表8 随机点地面植被高度统计
Table 8 Vegetation height statistics of ground random points

植被高度/cm0(裸地)0~55~1010~20>20所占比例/%35.9024.7019.9015.603.90

由图6可知,无人机摄影测量解算高程数据与GPS RTK地形测量高程数据高程差主要集中在0.1 m内,但也有部分点的差值超过0.1 m。

图6 随机点高程差正态分布曲线
Fig.6 Difference of elevation normal curve of random points

为进一步研究误差来源,在研究区中心区随机取3条剖面线(图7)进行地形对比。根据实地调查,研究区排土场以平台加斜坡的形式堆放,其中斜坡呈20°~30°,在从平台过度到斜坡时地形变化剧烈、棱角分明。由图7可知,修正后无人机解算地形与现实相符,而GPS RTK测量地形数据只能在整体上体现地形起伏。在地形平坦处两组数据高度重合,在地形突变处差异较大。

图7 无人机摄影测量解算数据与已有GPS RTK测量数据剖面对比示意
Fig.7 Cross-sections through modelled surface with perpendicular distance between the surface obtained from UVA photogrammetric data and the reference surface

5 结论与讨论

(1)利用无人机摄影测量技术,采用正射与倾斜相结合的影像获取方式保证影像质量,结合地面像控点保证影像精度,可获取研究区高分辨率DSM数据。

(2)基于红绿蓝波段的植被指数(RGBVI和EXG)回归模型对植被高度具有较好的模拟和预测精度,可用于研究区内植被高度的估算。利用回归模型可将DSM数据修正为DEM数据。

(3)通过检查点检验,修正后DEM数据精度显著提高,满足1∶500地形数据制作要求。通过随机点和剖面线对比已有GPS RTK测量地形数据,修正后DEM数据在地形复杂多变区可更好的展示真实地形细节。

(4)相对于传统地形测量手段,利用无人机平台可大幅提高工作效率和数据精度。但同时,由于可见光波段信息较少,本文中建立的可见光植被指数-植被高度回归模型不具有普适性。在植被覆盖复杂区,可先对研究区进行植被类型分类,对不同类型植被区分别建模以提高拟合精度。

参考文献(References):

[1] 卞正富,雷少刚,金丹,等.矿区土地修复的几个基本问题[J].煤炭学报,2018,43(1):190-197.

BIAN Zhengfu,LEI Shaogang,JIN Dan,et al.Several basic scientific issues related to mined land remediation[J].Journal of China Coal Society,2018,43(1):190-197.

[2] CHANG Jiang,HU Tinghao,LIU Xiangxu,et al.Construction of green infrastructure in coal-resource based city:A case study in Xuzhou urban area[J].International Journal of Coal Science & Technology,2018,5(1):92-104.

[3] 毕银丽,申慧慧.西部采煤沉陷地微生物复垦植被种群自我演变规律[J].煤炭学报,2019,44(1):307-315.

BI Yinli,SHEN Huihui.Effect of micro-reclamation on different planted forest on the vegetation self-succession in the western mining subsidence area[J].Journal of China Coal Society,2019,44(1):307-315.

[4] 蔡利平,李钢,史文中.增地节地型露天矿排土场优化设计[J].煤炭学报,2013,38(12):2208-2214.

CAI Liping,LI Gang,SHI Wenzhong.Optimal design for land expanding and conserving open-pit dump[J].Journal of China Coal Society,2013,48(12):2208-2214.

[5] 栾婷婷,谢振华,吴宗之,等.露天矿排土场滑坡的可拓评价预警[J].中南大学学报(自然科学版),2014,45(4):1274-1280.

LUAN Tingting,XIE Zhenhua,WU Zongzhi,et al.Extension evaluation and warning for waste dump landslide of open-pit mine[J].Journal of Central South University(Science and Technology),2014,45(4):1274-1280.

[6] 张太鹏,宋会传.无人机技术在现代矿山测量中的应用探讨[J].矿山测量,2010,15(3):44-46.

ZHANG Taipeng,SONG Huichuan.Application of drone technology in modern mine measurement[J].Minesurveying,2010,15(3):44-46.

[7] 李德仁,李明.无人机遥感系统的研究进展与应用前景[J].武汉大学学报(信息科学版),2014,39(5):505-513.

LI Deren,LI Ming.Research advance and application prospect of unmanned aerial vehicle remote sensing system[J].Geomatics and Information Science of Wuhan University,2014,39(5):505-513.

[8] 汪沛,罗锡文,周志艳,等.基于微小型无人机的遥感信息获取关键技术综述[J].农业工程学报,2014,30(18):1-12.

WANG Pei,LUO Xiwen,ZHOU Zhiyan,et al.Key technology for remote sensing information acquisition based on micro UAV[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(18):1-12.

[9] 马怀武,王俊强.RTK结合无人机低空摄影在高原地区测绘中的应用[J].测绘地理信息,2014,39(3):47-50.

MA Huaiwu,WANG Junqiang.Application of RTK combined with UAV photogrammetric in surveying and mapping of plateau[J].Journal of Geomatics,2014,39(3):47-50.

[10] 肖武,胡振琪,张建勇,等.无人机遥感在矿区监测与土地复垦中的应用前景[J].中国矿业,2017,26(6):71-78.

XIAO Wu,HU Zhenqi,ZHANG Jianyong,et al.The status and prospect of UAV remote sensing in mine monitoring and land reclamation[J].China Mining Magazine,2017,26(6):71-78.

[11] 薛永安,王晓丽,张明媚.无人机航摄系统快速测绘矿区大比例尺地形图[J].测绘地理信息,2013,38(2):46-48.

XUE Yong’an,WANG Xiaoli,ZHANG Mingmei.Fast survey and mapping of large-scale topographic map of coal mine using the UAV aerial system[J].Journal of Geomatics,2013,38(2):46-48.

[12] TONKIN T N,MIDGLEY N G,GRAHAM D J,et al.The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys:A test of emerging integrated approaches at Cwm Idwal,North Wales[J].Geomorphology,2014,226:35-43.

[13] GONG Chuangang,LEI Shaogang,BIAN Zhengfu,et al.Analysis of the development of an erosion gully in an open-pit coal mine dump during a winter freeze-thaw cycle by using low-cost UAVs[J].Remote Sensing,2019,11(11):1356.

[14] DOI Hideyuki,AKAMATSU Yoshihisa,WATANABE Yutaka,et al.Water sampling for environmental DNA surveys by using an unmanned aerial vehicle[J].Limnology and Oceanography:Methods,2017,15(11):939-944.

[15] SHANG Shaoling,LEE Zhongping,LIN Gong,et al.Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV[J].Remote Sensing of Environment,2017,198:85-94.

[16] 韩文霆,李广,苑梦婵,等.基于无人机遥感技术的玉米种植信息提取方法研究[J].农业机械学报,2017,48(1):139-147.

HAN Wenting,LI Guang,YUAN Mengchan,et al.Extraction method of maize planting information based on UAV remote sensing techonology[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(1):139-147.

[17] 李宗南,陈仲新,王利民,等.基于小型无人机遥感的玉米倒伏面积提取[J].农业工程学报,2014,30(19):207-213.

LI Zongnan,CHEN Zhongxin,WANG Limin,et al.Transactions of the chinese society of agricultural engineeringarea extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(19):207-213.

[18] 冯家莉,刘凯,朱远辉,等.无人机遥感在红树林资源调查中的应用[J].热带地理,2015(1):35-42.

FENG Jiali,LIU Kai,ZHU Yuanhui,et al.Application of unmanned aerial vehicles to mangrove resources monitoring[J].Tropical Geography,2015(1):35-42.

[19] 张园,陶萍,梁世祥,等.无人机遥感在森林资源调查中的应用[J].西南林业大学学报,2011,31(3):49-53.

ZHANG Yuan,TAO Ping,LIANG Shixiang,et al.Research on application of UAV RS techniques in forest inventories[J].Journal of Southwest Forestry College,2011,31(3):49-53.

[20] 张树文,颜凤芹,于灵雪,等.湿地遥感研究进展[J].地理科学,2013,33(11):1406-1412.

ZHANG Shuwen,YAN Fengqin,YU Lingxue,et al.Application of remote sensing technology towetland research[J].Scientia Geographica Sinica,2013,33(11):1406-1412.

[21] 洪运富,杨海军,李营,等.水源地污染源无人机遥感监测[J].中国环境监测,2015,31(5):163-166.

HONG Yunfu,YANG Haijun,LI Ying,et al.Monitoring of water source using unmanned aerial vehicle remote sensing technology[J].Environmental Monitoring in China,2015,31(5):163-166.

[22] 雷添杰,李长春,何孝莹.无人机航空遥感系统在灾害应急救援中的应用[J].自然灾害学报,2011,20(1):178-183.

LEI Tianjie,LI Zhangchun,HE Xiaoying.Application of aerial remote sensing of pilotless aircraft to disaster emergency rescue[J].Journal of Natural Disasters,2011,20(1):178-183.

[23] 温奇,陈世荣,和海霞,等.无人机遥感系统在云南盈江地震中的应用[J].自然灾害学报,2012,21(6):65-71.

WEN Qi,CHEN Shirong,HE Haixia,et al.Application of remote sensing system of unmanned aerial vehicle in Yingjiang,Yunnan earthquake[J].Journal of Natural Disasters,2012,21(6):65-71.

[24] GREENWOOD William,ZEKKOS Dimitrios,LYNCH Jerome,et al.UAV-Based 3-D characterization of rock masses and rock slides in nepal[A].50th Us Rock Mechanics/geomechanics Symposium[C].Houston:American Rock Mechanics Association,2016.

[25] 汤明文,戴礼豪,林朝辉,等.无人机在电力线路巡视中的应用[J].中国电力,2013,46(3):35-38.

TANG Mingwen,DAI Lihao,LIN Chaohui,et al.Application of unmanned aerial vehicle in inspecting transmission lines[J].Electric Power,2013,46(3):35-38.

[26] MARTNEZ-MARTNEZ J,CORB H,MARTIN-ROJAS I,et al.Stratigraphy,petrophysical characterization and 3D geological modelling of the historical quarry of Nueva Tabarca island (western Mediterranean):Implications on heritage conservation[J].Engineering Geology,2017,231:88-99.

[27] JÜRGEN Hackl,BRYAN T Adey,MICHA Wo-niak,et al.Use of unmanned aerial vehicle photogrammetry to obtain topographical information to improve bridge risk assessment[J].Journal of Infrastructure Systems,2018,24(1):1-14.

[28] NIETHAMMER U,JAMES M R,ROTHMUND S,et al.UAV-based remote sensing of the Super-Sauze landslide:Evaluation and results[J].Engineering Geology,2012,128:2-11.

[29] HUGENHOLTZ Chris H,WHITEHEAD Ken,BROWN Owen W,et al.Geomorphological mapping with a small unmanned aircraft system (sUAS):Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model[J].Geomorphology,2013,194:16-24.

[30] 周旺辉,蔡东健,甄宗坤.控制点布设对低空小型无人机高分影像精度的影响[J].测绘通报,2017(S1):69-74.

ZHOU Wanghui,CAI Dongjian,ZHEN Zongkun.Influence of control points’layout on accuracy of high resolution images acquired by low-altitude UAV[J].Bulletin of Surveying and Mapping,2017(S1):69-74.

[31] 陈天博,胡卓玮,魏铼,等.无人机遥感数据处理与滑坡信息提取[J].地球信息科学学报,2017,19(5):692-701.

CHEN Tianbo,HU Zhuowei,WEI Lai,et al.Data processing and landslide information extraction based on UAV remote sensing[J].Journal of Geo-Information Science,2017,19(5):692-701.

[32] DANIEL Scharstein,RICHARD Szeliski.A Taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1-3):7-42.

[33] 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.

TIAN Qingjiu,MIN Xiangjun.Advances in study on vegetation indices[J].Advance in Earth Sciences,1998,13(4):327-333.

[34] GAMON J A,SURFUS J S.Assessing leaf pigment content and activity with a reflectometer[J].New Phytologist,1999,143(1):105-117.

[35] SELLARO Romina,CREPY María,TRUPKIN Santiago Ariel,et al.Cryptochrome as a sensor of the blue/green ratio of natural radiation in arabidopsis[J].Plant Physiology,2010,154(1):401-409.

[36] GITELSON Anatoly A,KAUFMAN Yoram J,STARK Robert,et al.Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing of Environment,2002,80(1):76-87.

[37] HUNT JR E Raymond,CAVIGELLI Michel,DAUGHTRY Craig S T,et al.Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J].2005,6(4):359-378.

[38] SONNENTAG Oliver,HUFKENS Koen,TESHERA-STERNE Cory,et al.Digital repeat photography for phenological research in forest ecosystems[J].Agricultural and Forest Meteorology,2012,152:159-177.

[39] BENDIG Juliane,YU Kang,AASEN Helge,et al.Combining UAV-based plant height from crop surface models,visible,and near infrared vegetation indices for biomass monitoring in barley[J].International Journal of Applied Earth Observation and Geoinformation,2015,39:79-87.

[40] MESROOV A,HERNANDEZ M Ferrer,MESRO P.Augmented reality as an educational tool of M-learning focused on architecture and urban planning[A].IEEE International Conference on Emerging Elearning Technologies and Applications[C].Stary Smokovec,2015:325-330.

Key technology of DEM model construction based on UVA and vegetation index in dump soil field

GONG Chuangang1,2,BIAN Zhengfu1,2,BIAN Hefang1,2,LEI Shaogang1,2,HUANG Jiu1,2, ZHANG Zhouai3,GUO Haiqiao3,ZHANG Hao3

(1.Institute for Land Resources,China University of Mining and Technology,Xuzhou 221116,China; 2.Engineering Research Center for Mine Ecological Restoration under Ministry of Education,Xuzhou 221116,China; 3.Shenhua Baorixile Energy Corporation,Hulunbeier 021500,China)

Abstract:The waste dump of opencast coal mine is characterized by complex topography,loose stacking and strong heterogeneity.The long-term existence of the drainage field will produce some geological and environmental problems such as overall non-uniform settlement,slope instability deformation and peristalsis.Therefore,the understanding on the precise topographic data of the drainage field is the basis for ensuring its geological stability.However,the traditional topographic measurement technology is difficult to meet the requirement of high precision,and the terrain data obtained from low-altitude photogrammetry of UAV is influenced by surface vegetation,resulting in insufficient vertical accuracy.To overcome this problem,a method for obtaining topographic data based on the visible-light vegetation index-vegetation height regression model is proposed.The surface elevation value obtained by UAV photogrammetry is modified using regression model to improve vertical high precision.Taking the north slope of the outer dump of the Baorixile opencast coal mine as the research object,the UAV photogrammetry technique was used to obtain the initial topographic and positive image data,and the vegetation index-vegetation height regression model was established to optimize the initial elevation value.The results show that the visible vegetation index has a good correlation with the vegetation height,and the estimation precision of vegetation index based on different bands has difference,and the vegetation index EXG model (R2=0.952) and RGBVI model (R2=0.95) have high precision.Using the UAV Photogrammetry technique combined with the correction model to obtain the terrain data precision of the study area,the mean square root error of checkpoint is increased from 0.111 m to 0.045 m.Compared with the traditional GPS RTK terrain measurement technology,this method has a higher precision in the terrain complex,and obtains high-precision terrain data in medium and small scale.

Key words:dump site;vegetation index;opencast coal mine;terrain survey;unmanned aerial vehicle (UAV);photogrammetry

移动阅读

宫传刚,卞正富,卞和方,等.基于UVA与植被指数的排土场DEM模型构建关键技术[J].煤炭学报,2019,44(12):3849-3858.doi:10.13225/j.cnki.jccs.SH19.0826

GONG Chuangang,BIAN Zhengfu,BIAN Hefang,et al.Key technology of DEM model construction based on UVA and vegetation index in dump soil field[J].Journal of China Coal Society,2019,44(12):3849-3858.doi:10.13225/j.cnki.jccs.SH19.0826

中图分类号:P237;TD824

文献标志码:A

文章编号:0253-9993(2019)12-3849-10

收稿日期:2019-06-20

修回日期:2019-09-07

责任编辑:郭晓炜

基金项目:国家重点研发计划资助项目(2016YFC0501107);国家重点基础研究发展计划(973计划)资助项目(2014FY110800)

作者简介:宫传刚(1989—),男,安徽淮南人,博士研究生。E-mail:gongchuangang@126.com

通讯作者:雷少刚(1981—),男,四川南部人,教授,博士生导师。Tel:0516-83591330,E-mail:lsgang@126.com

Baidu
map