煤储层中微地震事件震级影响因素分析

李德伟,杨瑞召,孟令斌,王 力

(中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083)

摘 要:近年来,随着微地震技术发展,微地震的应用深度也在不断拓展。如微地震监测从最初简单的震源点定位到震源机制反演、地层主应力状态以及储层渗透率等高级解释参数。在众多解释参数中,微地震事件震级是一种极为重要的震源参数,它是表征在生产作业中诱发震源强度大小的物理量。不同地区诱发事件震级分布特点不尽相同,目前对于震级大小的影响因素尚不十分明确。以山西沁水盆地南部煤层气井水力压裂地面微地震监测为例,综合现有资料对该井压裂事件震级的影响因素进行了分析。首先,通过压裂施工曲线定量统计了施工中油压的平均压力和峰值压力,然后分别与微地震事件震级进行交汇分析;其次,应用Gutenberg-Richter定律研究事件震级在空间和时间频率的分布特征。最后基于三维地震相干体属性解释储层天然裂缝,应用摩尔库伦破裂准则分析天然裂缝对破裂压力的影响。分析表明:① 水力压裂中事件的平均震级或峰值震级都与水力压裂压力具有明显的正相关关系,压力是影响微地震事件震级的大小的直接因素。② 强震级集中区域表现为明显的低b值特点,表明该区域附近岩性相对更偏脆性,应力积累能力大于周围区域。③ 天然裂缝会降低地层的破裂压力,因此在煤层中裂缝发育区域诱发事件震级较低。水力压裂施工中诱发事件是一个复杂的过程,限于资料的限制,尚有一些影响震级的因素未进行分析,如地应力、储层脆性等。下一步工作将搜集尽可能多的资料,对震级影响进行更全面的分析。通过对水力压裂事件震级影响因素进行分析,有助于掌握事件震级的发生规律,从而保障水力压裂施工安全以及顺利进行。

关键词:微地震;事件震级;水力压裂;压裂施工曲线;Gutenberg-Richter定律

水力压裂过程中高压流体注入到地层,原生应力场变化导致岩石发生快速形变并释放出能量(即微地震事件),破裂后地层应力重新达到新的平衡状态。矩震级(Mw)是描述微地震大小最常用的方法,最早由HANKS和KANAMORI提出[1]。矩震级的大小与岩石破裂的位移量(岩石沿着断层面或裂缝面移动的距离)和断层或裂缝的面积相关[2]。YUSUKE MUKUHIRA等研究表明在水力压裂过程中微地震事件震级的大小与诱发地震发生的时刻和震源的位置均有关联[3]。如北美Barnett页岩区块的微地震事件要明显高于Marcellus区块[4]

陈海潮等指出微地震事件的震级与储层岩石的力学性质、原场应力状态、天然裂缝发育和分布情况密切相关[5]。一般情况下,脆性岩石会发生突然破坏,出现拉张或剪切断裂,伴随较小幅度的非弹性形变脆性岩石产生较大程度的应力降,因此储层中脆性岩石更容易诱发强震级事件。此外,当储层中存在天然裂缝时,应力沿着天然裂缝的薄弱面引起剪切滑动,由于摩擦系数和应力状态差异从而导致不同程度震级的微地震事件[6]。需要注意的是,地面微地震观测系统也会对监测到的事件震级产生影响。地面观测系统监测范围大,能够监测到较大震级的事件,但由于储层深度较深、地层吸收衰减强以及复杂地表环境等原因,地面获得小震级事件数量较少[7]

除上述影响水力压裂微地震事件震级影响因素外,笔者分析了水力压裂施工压力对微地震事件震级的影响、事件震级与b值的关系以及通过三维地震数据分析了天然裂缝对事件震级的影响。通过对水力压裂事件震级影响因素进行分析,有助于掌握强震级事件的发生规律,从而促进水力压裂施工效果的最大化。反之,也能够有效避免强震级事件导致套管发生形变或断裂。

1 工区概况

M井组位于沁水盆地南部,井组为L型井型,水平井段垂直深度在920~1 030 m。含气地层为山西组、太原组,其中山西组以灰色、灰黑色泥岩为主,太原组地层以灰黑色泥岩、深灰色灰岩为主与深灰色细砂岩、灰色泥质砂岩呈不等厚互层[8]。该地区主要煤层为3号煤,煤层深度由东南向西北方向逐渐变浅,煤层厚度2.4~7.5 m,水平井段附近无明显大断层发育[9-10]。据煤样测试,本区块3号煤层渗透率在0.025×10-15~0.029×10-15 m2,整体渗透性较差。

M井组井轨迹地面投影如图1所示,其中M-1井和M-2井实施了“泵送桥塞射孔连续压裂”储层改造。并对M-1井8段(2-9段)和M-2井9段(1-9段)压裂进行了地面微地震监测。根据地表状况,共部署5条测线、52套三分量采集设备,工区内检波器埋置于1 m浅孔中。

图1 M井组井轨迹地面投影
Fig.1 Ground projection of well trajectory of M well group

2 M井组事件震级计算

震级通过测量接收到的P波或S波振幅和频率来确定震源震级的大小[11],事件震级属于震源参数的一种衍生参数,震源参数包括震源发生的位置时间、地震矩、拐角频率、应力降以及断层类型等。目前震源参数通常基于Brune断层模型应用震源谱方法计算得到。Brune断层模型的理论震源振幅Ωtheory(f)[12]

(1)

其中,Ω0c为长周期振幅;f0c为震源处的P波或S波拐角频率。拐角频率是震源谱低频和高频趋势线的交点,它反映低频和高频的比例以及地震波高低频能量分布特征。当地震波穿过地层空间被地表检波器接收时,地层空间相当于一个低通滤波器,不同的岩性、构造以及传播距离对地震波造成不同程度的衰减,当考虑地震波的衰减时实际的震源谱[13]可表示为

(2)

其中,Ω(f)为检波器记录到的振幅;t为震源到检波器的旅行时间;Qc为P波或S波衰减的平均品质因子。计算震源参数需要从三分量的微地震记录中拾取S波的SH分量,将SH振幅谱转化为位移谱从而求得震源谱。

地震矩M0、矩震级Mw以及震源半径R已经被普遍认为是剪切滑动破裂的代表性震源参数[14]。地震矩M0是对非弹性形变引起地震强度的直接量度,是继地震波能量之后另一个关于描述地震强度的绝对力学量,地震矩M0等效于震源双力偶中一个力偶的力偶矩。地震波振幅的低频成分决定了地震矩M0的大小,断层面积越大,激发的长周期地震波的能量也越大,周期越长。因此,地震矩与地震所产生的断层长度、断层宽度、震源破裂平均位错量等静态的构造效应密切相关。地震矩M0通过式(3)[15]计算:

(3)

(4)

式中,ρ为地层岩石密度;β为S波速度;r为震源到检波器的距离(通过P波和S波时差得出);RS为S波的辐射因子;K为常量,该值取决于选用波的类型和震源模型(P波对应K值为0.32,S波对应K值为0.21);fc为观测到的拐角频率。

矩震级Mw由式(5)计算[16]得出

(5)

M井组事件定位结果如图2所示,其中事件点的颜色和大小均代表震级大小。可以看出震级分布具有明显的规律性,强震级事件集中分布井组中间段附近,如图5中椭圆区域标注的M-1井第5段(1-S5)、6段(1-S6)和M-2井第4段(2-S4)、5段(2-S5)。为了分析这种震级集中现象,本文分别对压裂施工参数和储层构造特征2个方面进行了分析。

图2 M井组事件定位结果
Fig.2 Event location results of M well group

3 事件震级影响因素分析

3.1 压裂施工曲线与事件震级关系

压裂施工曲线是水力压裂过程油管压力、套管压力、液体排量和混砂比随时间的记录,每条曲线可反映不同的信息。其中,压裂施工曲线以油压最为重要,它反映施工过程中地下的真实情况,是获取地层力学参数的主要依据,结合施工排量和砂比曲线能够反映储层内裂缝扩展以及流体运移特性的信息[17]。根据Nolte-Smith经典理论,压裂施工曲线是注入液流动、裂缝扩展和支撑剂运移的一种综合反映[18-19]。储层的应力状态、岩性特征以及天然裂缝会对压裂施工曲线造成不同的反映。因此,水力压裂事件震级与压裂压力存在某种内在关系。

对M井组的17段压裂施工曲线(图3)结合微地震事件震级进行了分析。依据压裂施工曲线中油压分别进行了压裂平均压力、峰值压力和破裂压力统计。按压裂段统计每段的平均震级和峰值震级。将平均震级和平均压力进行交汇如图4(a)所示,可以看出平均压力和平均震级具有明显的正相关关系。峰值震级与峰值压力交汇如图4(b)所示,峰值震级与峰值压力同样具有明显的线性关系,即峰值震级与峰值压力成正比关系。两种交汇图的规律与M井组事件震级分布规律较为吻合。

图3 MP54井组17段压裂曲线
Fig.3 17 fracturing curve of MP54 well group

3.2 微地震事件b值与震级关系

事件b值提供了事件在空间和时间频率分布的重要信息[20]。Gutenberg-Richter定律描述了震级M和事件发生频率N之间的关系,即

lg N=a-bM

(6)

式中,N为大于震级M的个数;ab为常量,参数b通常被称为b值。

对M-1和M-2两口井17段水力压裂监测共计1 304个事件统计了震级分布和Gutenberg-Richter关系。M井组微地震事件震级分布在-1~0.4级,如图5(a)所示。Gutenberg-Richter曲线如图5(b)所示,应用最小二乘法对震级-0.8~0.4进行线性拟合。研究表明,天然地震b值接近于1,致密砂岩压裂诱发事件b值为2.4左右[21-22]。本工区统计b值为2.67,表明较大震级事件数量较少,这与监测结果一致。

图4 震级与油压力的关系
Fig.4 Relationship of magnitude and oil pressure

图5 Gutenberg-Richter震级关系统计
Fig.5 Statistical histogram of Gutenberg-Richter magnitude relationship

b值与储层岩石的脆性、塑性、弹性性质有关[23-24]。通常情况下岩体内构造应力的大小与b值成反比,低b值区往往具有更高的应力积累。因此,通过b值可以判断储层的应力和岩性特征。M井组各段平均震级与b值统计对比如图6所示,可以看出强震级集中段1-S5,1-S6,2-S4,2-S5对应较小的b值,该段区域附近煤层可能更偏向于脆性,储层应力积累能力较周围区域更强,从而导致在该段附近高震级事件较多。

3.3 天然裂缝与震级关系

研究结果表明天然裂缝的存在降低岩体的强度,有助于裂缝的扩展[25]。同时根据莫尔-库伦破裂准则,当岩体内部的剪切力超过岩体的抗剪强度时岩体发生破裂。岩体的抗剪强度极限τmax[26]表示为

τmax=τ0+μ(S1+S2-2p0)+μ(S1-

S2)cos(2φ)/2

(7)

其中,τmax为作用于破坏面上的剪切应力;τ0为黏聚力;μ为层面间的摩擦因数;S1S2分别为最大和最小主应力;p0为地层压力;φ为最大主应力和破坏面法向夹角。式(7)表明当岩体所受剪切力τ大于公式右侧时,岩体发生破裂,而当岩体中已有断裂面,此时内聚力τ0=0,岩体的抗剪强度极限降低。因此,当地层中裂缝发育时会明显的降低破裂压力。

图6 M井组各段平均震级与b值统计对比
Fig.6 Statistical comparison of average magnitude and b value of each section of M well group

根据该工区三维地震数据提取了相干体属性表征地层断裂。相干体技术作为一种地震属性,是基于相邻地震道在横向上的地震波相位与振幅相似性程度大小来预测地质异常体(断层、裂缝、溶洞、河道以及异常岩体边界)的一种手段[27]。在有天然裂隙的地层中进行压裂,当天然裂缝的方位不同时压裂裂缝既可能是沿着天然裂缝扩展的裂缝,也可能是压裂过程中产生的新裂缝,因此天然裂缝的方位对破裂压力具有一定的影响。相干体与微地震事件叠合如图7所示,其中灰色部分为储层改造范围(SRV)。根据压裂段上的裂缝密度圈定了两个裂缝密度发育的区域,即图中A区域和B区域。图中可以看出,强震级段附近天然裂缝较少,而地震级事件分布区域天然裂缝相对发育,在A区域和B区域尤为明显。在该工区内,A,B区域相对发育的天然裂缝降低了储层的抗剪切强度,即降低了地层的破裂压裂,从而诱发事件的震级较小。

图7 相干体属性与微地震事件叠合(背景为相干体属性,蓝色和红色表示裂缝发育区)
Fig.7 Coherent cube attributes overlap with microseismic events (background is coherence cube attributes,blue and red represent fracture development areas)

4 结 论

(1)微地震事件震级与水力压裂的平均压力和峰值压力具有明显的正相关关系,压力是影响煤层诱发的微地震事件震级的大小的重要因素。

(2)分析M井组各段b值发现,较大震级事件集中段1-S5,1-S6,2-S4,2-S5的b值较低,表明该段附近岩性相对更偏脆性,应力积累能力大于周围储层区域,导致了在该区域诱发了较大震级事件。

(3)根据摩尔库伦破裂准则当岩体中存在破裂面时会降低岩体的抗剪切强度,该工区内的分析结果表明天然裂缝降低了地层破裂压力,在裂缝发育区域导致震级降低。

参考文献(References):

[1] SCORDILISS E M.Empirical global relations converting MS and mb to moment magnitude[J].Journal of Seismology,2006,10(2):225-236.

[2] MAXWELL S C,URBANCIC T I,STEINSBERGER N,et al.Microseismic imaging of hydraulic fracture complexity in the Barnett shale[A].SPE annual technical conference and exhibition[C].Society of Petroleum Engineers,2002.

[3] MUKUHIRA Y,ASANUMA H,NIITSUMA H,et al.Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel,Switzerland[J].Geothermics,2013,45(45):1-17.

[4] WARPINSKI N R,DU J,ZIMMER U.Measurements of hydraulic-fracture-induced seismicity in gas shales[J].SPE Production & Operations,2012,27(3):240-252.

[5] 陈海潮,唐有彩,钮凤林,等.利用微地震参数评估水力压裂改造效果研究进展[J].石油科学通报,2016,1(2):198-208.

CHEN Haichao,TANG Youcai,NIU Fenglin,et al.Recent advances in microseismic monitoring and its implication to hydraulic fracturing mapping[J].Petroleum Science Bulletin,2016,1(2):198-208.

[6] RUTLEDGE J T,PHILLIPS W S.Hydraulic stimulation of natural fractures as revealed by induced microearthquakes,Carthage Cotton Valley gas field,east Texas Hydraulic Stimulation of Natural Fractures[J].Geophysics,2003,68(2):441-452.

[7] 任朝发,赵海波,陈百军,等.地面微地震监测采集观测系统定位精度的影响因素分析——以大庆SZ探区为例[J].石油物探,2018,57(5):668-677.

REN Chaofa,ZHAO Haibo,CHEN Baijun,et al.Analysis of location precision factors in surface microseismic monitoring acquisition geometry:A case study of an SZ exploration area in Daqing,China[J].Geophysical Prospecting for Petroleum,2018,57(5):668-677.

[8] 秦勇,韦重韬,张政,等.沁水盆地中—南部煤系及其上覆地层游离天然气成藏的地质控制[J].地学前缘,2016,23(3):24-35.

QIN Yong,WEI Chongtao,ZHANG Zheng,et al.Geological controls of free natural gas reservoirs in coal measures and overlying strata in the Central and Southern Qinshui Basin[J].Earth Science Frontiers,2016,23(3):24-35.

[9] 颜志丰,琚宜文,唐书恒,等.沁水盆地南部煤层气储层压裂过程数值模拟研究[J].地球物理学报,2013,56(5):1734-1744.

YAN Zhifeng,JU Yiwen,TANG Shuheng,et al.Numerical simulation study of fracturing process in coalbed methane reservoirs in southern Qinshui basin[J].Chinese Journal of Geophysics,2013,56(5):1734-1744.

[10] 孟召平,雷钧焕,王宇恒.基于Griffith强度理论的煤储层水力压裂有利区评价[J].煤炭学报,2020,45(1):268-275.

MENG Zhaoping,LEI Junhuan,WANG Yuheng.Evaluation of favorable areas for hydraulic fracturing of coal reservoir based on Griffith strength theory[ J].Journal of China Coal Society,2020,45(1):268-275.

[11] 陈运泰,刘瑞丰.矩震级及其计算[J].地震地磁观测与研究,2018,39(2):1-9.

CHEN Yuntai,LIU Ruifeng.Moment magnitude and its calculation[J].Seismological and Geomagnetic Observation and Research,2018,39(2):1-9.

[12] MUKUHIRA Y,ASANUMA H,NIITSUMA H,et al.Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel,Switzerland[J].Geothermics,2013,45(45):1-17.

[13] KWIATEK G,BENZION Y.Assessment of P and S wave energy radiated from very small shear-tensile seismic events in a deep South African mine[J].Journal of Geophysical Research:Solid Earth,2013,118(7):3630-3641.

[14] KWIATEK G,BOHNHOFF M,DRESEN G,et al.Microseismicity induced during fluid-injection:A case study from the geothermal site at Groβ Schönebeck,North German Basin[J].Acta Geophysica,2010,58(6):995-1020.

[15] 袁乃荣,刘瑞丰,李赞,等.能量震级及其测定[J].地震地磁观测与研究,2018,39(5):1-7.

YUAN Nairong,LIU Ruifeng,LI Zan,et al.Energy magnitude and its determination[J].Seismological and Geomagnetic Observation and Research,2018,39(5):1-7.

[16] 陈运泰,刘瑞丰.地震的震级[J].地震地磁观测与研究,2004,25(6):1-12.

CHEN Yuntai,LIU Ruifeng.Earthquake magnitude[J].Seismological and Geomagnetic Observation and Research,2004,25(6):1-12.

[17] 张小东,胡修凤,杨延辉,等.沁南煤层气井压裂施工曲线分析[J].河南理工大学学报(自然科学版),2017,36(3):21-27.

ZHANG Xiaodong,HU Xiufeng,YANG Yanhui,et al.Analysis of hydraulic fracturing operation curves of CBM wells in Southern Qinshui Basin[J].Journal of Henan Polytechnic University(Natural Science),2017,36(3):21-27.

[18] 许耀波,郭盛强.软硬煤复合的煤层气水平井分段压裂技术及应用[J].煤炭学报,2019,44(4):1169-1177.

XU Yaobo,GUO Shengqiang.Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[ J].Journal of China Coal Society,2019,44(4):1169-1177.

[19] 李亭,杨琦.煤层气井压裂施工曲线特征分析及应用[J].中国煤炭地质,2012,24(9):20-24.

LI Ting,YANG Qi.CBM well fracturing operation curve characteristic analysis and application[J].Coal Geology of China,2012,24(9):20-24.

[20] MAITY D,JORDAN C.Using microseismic frequency-magnitude distributions from hydraulic fracturing as an incremental tool for fracture completion diagnostics[J].Journal of Petroleum Science and Engineering,2019(176):1135-1151.

[21] 陈培善,白彤霞,李保昆.b值和地震复发周期[J].地球物理学报,2003,46(4):510-519.

CHEN Peishan,BAI Tongxia,LI Baokun.b-value and earthquake occurrence period[J].Chinese Journal of Geophysics,2003,46(4):510-519.

[22] 李政,常旭,姚振兴,等.微地震方法的裂缝监测与储层评价[J].地球物理学报,2019,62(2):707-719.

LI Zheng,CHANG Xu,YAO Zhenxing,et al.Fracture monitoring and reservoir evaluation by micro-seismic method[J].Chinese Journal of Geophysics,2019,62(2):707-719.

[23] WANG C,WU A,LIU X,et al.Study on fractal characteristics of b value with microseismic activity in deep mining[J].Procedia Earth and Planetary Science,2009,1(1):592-597.

[24] 张群,葛春贵,李伟,等.碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J].煤炭学报,2018,43(1):150-159.

ZHANG Qun,GE Chungui,LI Wei,et al.A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J].Journal of China Coal Society,2018,43(1):150-159.

[25] 孙剑秋.水力压裂裂缝扩展规律和破裂压力的数值研究[D].大连:大连理工大学,2015.

SUN Jianqiu.Research on numerical simulation of hydraulic fracture propagation and fracture pressure[D].Dalian:Dalian University of Technology,2015.

[26] 杨瑞召,赵争光,王占刚,等.页岩气开发微地震监测技术[M].上海:华东理工大学出版社,2017.

[27] 杨瑞召,孙志朋,高朵,等.倾角控制下的三维相干体异常识别技术研究[J].能源技术与管理,2015,40(6):162-164.

YANG Ruizhao,SUN Zhipeng,GAO Duo,et al.Research on the technology of three-dimensional coherent body anomaly recognition under the control of tilt angle[J].Energy Technology and Management,2015,40(6):162-164.

Analysis of factors influencing the magnitude of microseismic events in coal reservoirs

LI Dewei,YANG Ruizhao,MENG Lingbin,WANG Li

(School of Geoscience and Surveying Engineering,China University of Mining and Technology (Beijing),Beijing 100083,China)

Abstract:In recent years,with the development of microseismic technology,the application depth of microseismic is also expanding,for example,microseismic monitoring from the initial simple source locating to source mechanism inversion,formation main stress state and reservoir permeability and other high-level interpretation parameters.Among many interpretation parameters,the magnitude of microseismic events is a very important source parameter,which is representing the intensity of induced source in production.The magnitude distribution characteristics of induced events in different regions are different.At present,the influencing factors of magnitude are not very clear.Taking the surface microseismic monitoring of hydraulic fracturing of coalbed methane wells in the south of Qinshui Basin as an example,the influencing factors of the magnitude of fracturing events in this well were analyzed based on the existing data.First of all,the average pressure and peak pressure of oil pressure during the hydraulic fracturing were calculated quantitatively through the fracturing hydraulic fracturing curve,and then the intersection analysis was carried out with the magnitude of microseismic events respectively.Secondly,Gutenberg-Richter law was applied to study the distribution characteristics of events magnitude in space and time frequency.Finally,based on the attributes of three-dimensional seismic coherence body,the natural fracture of reservoir was interpreted,and the influence of natural fracture on fracture pressure was analyzed by using Mohr Coulomb fracture criterion.The results show that ① the average magnitude or peak magnitude of the events in hydraulic fracturing has a significant positive correlation with the hydraulic fracturing pressure,and the pressure is the direct factor affecting the magnitude of the microseismic events.② The area with strong magnitude con-centration is characterized by obvious low b value,which indicates that the lithology near the area is relatively more brittle,and the stress accumulation capacity is greater than the surrounding area.③ The natural fractures will reduce the fracture open pressure of the formation,so the induced events magnitude in the fracture development area of the coal seam is relatively low.The induced events in hydraulic fracturing is a complex process,limited by the data,there are still some factors affecting the magnitude that have not been analyzed,such as in-situ stress,reservoir brittleness and so on.The next step is to collect as much data as possible to make a more comprehensive analysis of the magnitude impact.Through the analysis of the factors influencing the magnitude of the hydraulic fracturing events,it is helpful to understand the occurrence law of the magnitude of the events,so as to ensure the safety and smooth progress of the hydraulic fracturing.

Key words:microseismic;event magnitude;hydraulic fracturing;fracturing curve;Gutenberg-Richter law

中图分类号:P631.4

文献标志码:A

文章编号:0253-9993(2020)11-3895-08

移动阅读

李德伟,杨瑞召,孟令斌,等.煤储层中微地震事件震级影响因素分析[J].煤炭学报,2020,45(11):3895-3902.

LI Dewei,YANG Ruizhao,MENG Lingbin,et al.Analysis of factors influencing the magnitude of microseismic events in coal reservoirs[J].Journal of China Coal Society,2020,45(11):3895-3902.

收稿日期:2019-09-22

修回日期:2020-03-01

责任编辑:韩晋平

DOI:10.13225/j.cnki.jccs.2019.1307

基金项目:国家重点研发计划资助项目(2018YFB0605603)

作者简介:李德伟(1990—),男,天津人,博士研究生。E-mail:lideweidavid@foxmail.com

通讯作者:杨瑞召(1964—),男,河南洛阳人,教授。E-mail:yrz@cumtb.edu.cn

Baidu
map