煤系腐植酸磁性颗粒对水中Pb2+和Hg2+的选择性吸附

万克记1,范津津2,王国强2,许恩乐2,贺琼琼1,苗真勇1,2,张明亮3

(1.中国矿业大学 国家煤加工与洁净化工程技术研究中心,江苏 徐州 221116; 2.中国矿业大学 化工学院,江苏 徐州 221116; 3.内蒙古伊泰京粤酸刺沟矿业有限公司,内蒙古 鄂尔多斯 010300)

摘 要:由于重金属的难降解性,为避免治理过程中的污染转移,重金属的资源化回收是实现环境与经济效益双赢的有效途径,这就要求吸附剂对目标重金属具有一定的吸附选择性。通过羟甲基化改性提高煤系腐植酸(HA)表面含氧基团密度,形成对重金属吸附的多齿配位结构,来提高HA吸附选择性。改性后的腐植酸进一步与Fe3O4共沉淀,生成具有吸附速率快、选择性高且易于固液分离的羟甲基化煤系腐植酸磁性颗粒(OHA-MNPs),用于废水中重金属的深度分离。对吸附剂进行系统表征,并研究其吸附动力学、吸附热力学、微观吸附机制和多金属共存溶液体系中Pb2+和Hg2+的吸附选择性。结果表明OHA-MNPs表面腐植酸含量约为9.81%,颗粒粒径主要分布于7~11 nm,具有很好的溶液分散性;Langmuir和准二级动力学模型能够准确的描述OHA-MNPs对Pb2+或Hg2+的吸附热力学和动力学;OHA-MNPs对Pb2+或Hg2+的吸附作用以高密度含氧基团多齿络合配位为主,还伴有酸性基团离子交换和静电吸附;在模拟多金属离子共存废水中,OHA-MNPs对Pb2+和Hg2+均表现出较高的吸附选择性,吸附序列满足Hg2+ >Pb2+ ≫ Cu2+ ≫ Ni2+/Cd2+,且在总阳离子质量浓度是Pb2+的44.78倍的实际酸性矿井废水中,能够对93.76%的Pb2+选择性去除。OHA-MNPs同时具有良好的再生能力,是一种高效、绿色、低成本重金属吸附剂。

关键词:煤系腐植酸;磁性纳米颗粒;羟甲基化;重金属吸附;酸性矿井废水

随着国家工业化进程的加快,采矿、氯碱化工、农药、有色金属冶炼、蓄电池制造等生产过程释放的大量重金属引发了严峻的水污染问题。以铅、汞等为代表的高毒性重金属具有难降解和生物体富集等特征,能够对人脑、肾脏、中枢神经造成极大的损伤[1],重金属环境污染正在引发人们的担忧。针对重金属废水的处置,离子交换、化学沉降、膜分离、电化学还原、生物法及吸附技术等被广泛采用[2-3]。而吸附作为一种低质量浓度重金属废水的深度净化方法,能有效避免过量化学沉淀剂导致的可溶性金属络合物的生成。

我国具有储量丰富的褐煤资源,弱化其化石能源属性,突出材料化应用,正在成为褐煤绿色化发展新趋势。腐植酸是褐煤重要的有机组分,具有丰富的羧基、酚羟基等活性基团[4-5],能够对金属阳离子产生强的络合作用,可作为廉价吸附材料用于废水中重金属的去除。为避免溶解,腐植酸的固化是其作为吸附材料应用的前提。近年来,磁性纳米颗粒(MNPs)类吸附剂,因其吸附速度快、易于固液分离、绿色环保等优势[6-9],正在成为废水中重金属吸附分离领域研究的热点。将腐植酸固化于Fe3O4表面形成腐植酸磁性颗粒(HA-MNPs)已经应用于废水中无机砷的去除[10]、海水中铀的提取[11]以及Cr(VI)的还原[12]。然而,OHA-MNPs对重金属的吸附选择性仍然较弱,难以在多金属共存溶液中实现对高毒性Pb2+和Hg2+的有效分离。

增加腐植酸表面基团密度,形成对重金属吸附稳定性和亲和度远高于单齿的多齿配位结构,可提高其对重金属的吸附选择性。煤系腐植酸分子中含有大量的酚羟基,能够通过给电子共轭效应,增加苯环电子云密度,使苯环易发生亲电取代。因而,以甲醛为氧化剂,在苯酚的邻、对位引入羟基,通过羟甲基化改性来提高腐植酸表面含氧基团密度,可为实现腐植酸对Pb2+和Hg2+的高效选择性吸附提供思路。

因此,笔者通过煤系腐植酸的羟甲基化改性来提高表面含氧基团密度,进一步共沉淀制备羟甲基化腐植酸磁性颗粒(OHA-MNPs),用于废水中Pb2+和Hg2+的吸附分离。考察了OHA-MNPs对单一Pb2+,Hg2+的吸附动力学、热力学、微观吸附机制以及多金属竞争下的Pb2+和Hg2+吸附选择性等方面。

1 实验部分

1.1 煤系腐植酸的提取与羟甲基化改性

以云南昭通褐煤为原料(工业分析和元素分析见表1),采用碱溶酸析法提取腐植酸。将褐煤干燥后研磨至74 μm以下,采用38%的盐酸和40%的氢氟酸在70 ℃条件下浸泡6 h进行脱矿物质处理。取15 g脱矿褐煤同150 mL 1 mol/L的氢氧化钠溶液混合,室温震荡24 h后,经8 000 r/min转速离心10 min后获得上清液,调整上清液pH至1~2 使腐植酸沉淀析出,进一步干燥分离。

表1 昭通褐煤工业分析和元素分析
Table 1 Proximate and ultimate analysis of Zhaotong lignite %

工业分析MarVdFCdAd元素分析CdafHdafNdafSdafOdaf61.2047.9634.2817.7661.534.911.260.5331.77

腐植酸的羟甲基化反应如图1所示。取2 g腐植酸溶于20 mL水溶液(pH=11.0)后加热至75 ℃,将1.20 mL 38%的甲醛溶液在1.5 h内分4次加入,反应2 h后,溶液冷却至室温,采用真空冷冻干燥获得羟甲基化煤系腐植酸(OHA)。

图1 腐植酸羟甲基化反应
Fig.1 Hydroxymethylated reaction of HA

1.2 羟甲基化煤系腐植酸磁性纳米颗粒(OHA-MNPs)的共沉淀制备

6.0 g FeCl3·6H2O和3.0 g FeCl2·4H2O溶于100 mL去离子水后加热至90 ℃,取50 mL 1% 羟甲基化腐植酸钠溶液和10 mL 25%的氨水依次加入。在90 ℃条件下反应30 min后冷却至室温,所得黑色沉底物经去离子水洗涤,通过磁选分离、干燥后获得OHA-MNPs。采用热重分析仪(TGA),以15 ℃/min 升温速率,从室温升至1 000 ℃煅烧测定OHA-MNPs表面腐植酸含量。通过透射电镜(TEM)、X射线衍射仪(XRD)等对其表面形貌和组成进行表征。

1.3 OHA-MNPs对重金属的吸附实验

采用30 mL初始质量浓度为10 mg/L的含Pb2+或Hg2+的重金属溶液,进行吸附动力学实验。为避免pH过高引起Pb2+沉淀[13],溶液初始pH设定为5.0,吸附剂投加量控制在0.8~1.0 g/L。为维持吸附过程固液比恒定,采取多组平行吸附试验同时进行。在0~60 min内,选取不同时间节点依次终止各平行组吸附实验,最后通过磁选固液分离(图2)。借助等离子体电感耦合发射光谱仪(ICP-OES)和原子荧光光谱(AFS)测定残余溶液中Pb2+和Hg2+质量浓度。

图2 吸附剂快速磁选回收
Fig.2 Rapid magnetic separation of adsorbent

取10 mg吸附剂加入30 mL含Pb2+或Hg2+的溶液,进行等温吸附实验。溶液初始pH设定为5.0。由于ICP-OES及AFS等都存在较低的质量浓度检出限,为避免初始金属质量浓度过高导致样品被过度稀释,扩大测量误差,本实验采用Hg2+初始质量浓度0~50 mg/L,Pb2+初始质量浓度0~130 mg/L。

25 mg吸附剂投加于30 mL初始质量浓度均为10 mg/L的Ni2+,Cd2+,Cu2+,Pb2+和Hg2+混合溶液中,用0.1 mol/L的HNO3和NaOH溶液调节pH,研究溶液pH对吸附过程的影响。吸附平衡后测定残余溶液金属离子质量浓度。

2 结果与讨论

2.1 OHA-MNPs吸附剂表征

图3(a)为OHA-MNPs的TEM 图及其200个颗粒的统计粒径分布。腐植酸表面大量含氧官能团,能够在水溶液中电离形成负电荷表面,颗粒间产生的静电斥力,使OHA-MNPs具有良好的溶液分散性,能够为金属离子的吸附提供较大接触面积。由图3(a)可知,OHA-MNPs颗粒粒径主要分布于7~11 nm,约占总粒度分布的67.41%。图3(b)为OHA-MNPs和MNPs的热重曲线。当加热到1 000 ℃时,MNPs失重5.19%,OHA-MNPs失重15%。因而,可计算得出附着于MNPs表面的腐植酸含量为9.81%。OHA-MNPs的XRD谱图如图3(c)所示,2θ为30.0°,35.4°,43.2°,53.5°和57.0°处分别对应OHA-MNPs中Fe3O4的(220),(331),(400),(422)和(511)晶面[14-15],这说明腐植酸的修饰并没有改变Fe3O4的晶体结构。而OHA-MNPs的XRD背景基线噪声较大,为吸附剂存在有机碳干扰。以上数据均说明,羟甲基化腐植酸成功负载于MNPs表面,形成了具有良好分散性的纳米颗粒吸附剂。

图3 OHA-MNPs吸附剂表征
Fig.3 Characteristics of OHA-MNPs

2.2 吸附等温线

在pH=5.0时,OHA-MNPs分别对单一Pb2+和Hg2+的吸附等温线如图4所示(其中,qe为平衡吸附容量;Ce为吸附平衡质量浓度)。Langmuir 吸附等温模型[16]拟合系数(R2)均大于0.95,能够很好的描述OHA-MNPs对Pb2+或Hg2+的吸附热力学性质,表明以化学吸附为主的吸附过程。以Langmuir 吸附等温模型计算OHA-MNPs对Pb2+和Hg2+的最大吸附容量(qm)分别为89.05和90.09 mg/g,符合MNPs对重金属吸附容量范围[8,17-18]

图4 Pb2+和Hg2+吸附等温线及Langmuir模型拟合
Fig.4 Isothermals of Pb2+ and Hg2+ fitted by Langmuir model

2.3 OHA-MNPs对Pb2+和Hg2+吸附动力学

OHA-MNPs对单一Pb2+和Hg2+的吸附动力学曲线如图5所示。OHA-MNPs在t=5 min内将82%的Pb2+或94%的Hg2+快速去除,极高的吸附速率可归结于表面丰富的含氧基团和良好的颗粒分散性。随着吸附时间的增长,吸附速率逐渐降低,但总的吸附平衡可在30 min内达到。准一级和准二级吸附动力学模型对吸附曲线拟合结果如图6所示(其中,qtt时刻吸附容量;k为模型常数)。准二级动力学模型能够更好的描述OHA-MNPs对Pb2+或Hg2+的吸附过程,其线性拟合相关系数R2值均达到0.999 9,远高于准一级动力学模型的0.759 4和0.831 1。这也说明络合配位、离子交换等的化学吸附是OHA-MNPs对Pb2+和Hg2+的主要作用机制[19]

图5 OHA-MNPs 对Pb2+和Hg2+吸附动力学
Fig.5 Adsorption kinetics of OHA-MNPs for Pb2+ and Hg2+

图6 Pb2+和Hg2+吸附动力学曲线线性拟合
Fig.6 Linear fitting results of adsorption kinetics of Pb2+/Hg2+

2.4 吸附机制

图7为OHA-MNPs对Pb2+或Hg2+吸附前后的XPS O1s精细光谱。由图7可知,OHA-MNPs中氧元素的化学形态主要以磁性Fe3O4的晶格氧Fe—O(530.1 eV[20-21]),CO(531.4 eV[22-23]),C—O(532.5 eV[24])和O—CO(533.7 eV[25])等形式存在。在Pb2+吸附后,Fe—O,CO,C—O和O—CO的结合能均提高了0.1 eV。OHA-MNPs吸附Hg2+后,Fe—O,CO,C—O和O—CO的结合能分别提高了0.1,0.2,0.2和0.1 eV。结合能的提高可归结于OHA-MNPs中氧原子同Pb2+或Hg2+的络合配位,即吸附过程中电子由氧原子向Pb2+或Hg2+发生偏移,降低了周围电子云密度,导致外层电子对内层电子摆脱原子核束缚给予的能量补偿作用减弱,引发结合能的增加。OHA-MNPs中羟甲基化腐植酸和Fe3O4均参与对Pb2+和Hg2+的络合配位,构成了主要吸附位点。

图7 OHA-MNPs吸附Pb2+或Hg2+前后O1s谱
Fig.7 O1s spectra of OHA-MNPs after Pb2+ or Hg2+ adsorption

根据路易斯软硬酸碱理论[26],含硫元素对Pb2+或Hg2+具有很强配位能力。图8为OHA-MNPs对Pb2+或Hg2+吸附前后的XPS S2p精细谱。OHA-MNPs表面硫元素主要来自于煤系腐植酸,以磺酸基和C—S键形式存在。磺酸基(167~169 eV)在吸附Pb2+或Hg2+后峰位和强度变化不大,而C—S键只在吸附Hg2+后强度减弱,说明OHA-MNPs对Hg2+的吸附存在S—Hg配位。

图8 OHA-MNPs吸附Pb2+ 或 Hg2+后S2p谱
Fig.8 S2p spectra of OHA-MNPs after Pb2+ or Hg2+ adsorption

OHA-MNPs分别对Pb2+和Hg2+吸附前后红外光谱(FTIR)如图9所示。波长为3 425 cm-1处强吸收峰为—OH伸缩振动;1 708 cm-1处为羧基的CO伸缩振动[27];1 602 cm-1处对应芳香化合物的CC振动和羧基—COO-的反伸缩振动[28];1 400 cm-1处峰代表腐植酸CO不对称伸缩峰[27];1 258 cm-1处可能是脂肪族中羧酸CO弯曲振动和酚类的O—H伸缩振动;在1 037cm-1处为C—O—C的伸缩振动[29];在823 cm-1处为C—H面外弯曲振动;以波长600 cm-1 为中心的强吸收峰为磁性Fe3O4的Fe—O伸缩振动峰[4]。由于OHA-MNPs中硫含量较低,磺酸基等红外吸收峰强度较弱,不易分辨。OHA-MNPs在吸附Pb2+或Hg2+后,主要含氧基团包括—OH,CO,C—O—C和Fe—O吸收峰强度整体减弱,同时1 602 cm-1处对应的—COO-以及1 400 cm-1处的CO向低波长偏移,这都说明吸附过程中OHA-MNPs表面含氧基团同Pb2+和Hg2+发生配位等的化学作用,且Fe3O4表面羟基和OHA表面含氧基团均参与对Pb2+和Hg2+的化学吸附。OHA-MNPs吸附Pb2+和Hg2+后的FTIR变化规律同XPS能谱结合能变化相对应,进一步证实CO,C—O,Fe—O等构成主要吸附位点。

图9 OHA-MNPs吸附Hg2+或Pb2+前后红外光谱
Fig.9 FTIR spectra of OHA-MNPs before and after Pb2+ or Hg2+ adsorption

随着溶液初始pH由低到高增加,OHA-MNPs对Pb2+或Hg2+吸附后的溶液pH由碱化向酸化转变,如图10所示。吸附前后溶液pH相等处可视为吸附剂OHA-MNPs的零电点[1],即pH=4.0。在pH < 4.0时,羧基、酚羟基等被大量H+包围,电离作用较弱,富集于吸附剂表面的H+导致溶液趋于碱化,吸附剂表面表现为正电,对金属阳离子存在斥力,限制了离子交换和静电吸附;当溶液初始pH > 4.0时,羧基等的电离能力增强[30],吸附剂表面负电势增加,金属阳离子对羧基、酚羟基中H+的离子交换能力增强,使得吸附后的溶液趋于酸化。上述过程证实OHA-MNPs对Pb2+或Hg2+的吸附除络合配位外还存在离子交换和静电吸附等作用。

图10 OHA-MNPs对Pb2+或Hg2+吸附前后溶液pH变化
Fig.10 Variations of solution pH after Pb2+ or Hg2+ adsorption

2.5 OHA-MNPs对Pb2+和Hg2+吸附选择性

配制包含Ni2+,Cd2+,Cu2+,Pb2+,Hg2+五种重金属且初始质量浓度均为10 mg/L混合溶液用以模拟重金属废水,比较不同pH条件下的OHA-MNPs和HA-MNPs对Pb2+和Hg2+吸附选择性,结果如图11所示。随着溶液初始pH的升高,2种吸附剂对5种重金属的去除率均有不同程度的提高,这是由于吸附剂表面酸性基团电离强化了对金属阳离子静电吸附,同时,含氧基团的去质子化过程释放了更多位点。HA-MNPs对Cu2+,Pb2+,Hg2+有着较好的吸附亲和力,吸附选择性序列满足Hg2+/Pb2+> Cu2+≫ Ni2+/Cd2+。与HA-MNPs相比,OHA-MNPs在整个pH变化范围对Hg2+都表现出更好的选择性,去除率始终保持在85%以上,同时,对Pb2+的选择性也有较大提高,吸附亲和力序列为Hg2+ >Pb2+ ≫Cu2+ ≫ Ni2+/Cd2+。在溶液初始pH=3.0时,85%的Hg2+和40%的Pb2+仍然附着于吸附剂,说明OHA-MNPs同Hg2+和Pb2+之间存在强烈的化学作用,且构成主要吸附机制。因而,OHA-MNPs表面较高的基团密度,有利于其对Pb2+和Hg2+吸附形成更稳固的螯合结构,从而提高吸附选择性。溶液pH对 Cu2+的吸附影响较大,pH=6.0时的Cu2+去除率约为pH=3.0时的8倍,说明吸附剂对Cu2+是以弱的配位和静电作用为主。

图11 OHA-MNPs 和HA-MNPs对模拟废水中多金属的 竞争吸附
Fig.11 Competitive adsorption of OHA-MNPs for heavy metal ions

煤炭、有色金属矿开采过程中,在风化、雨水淋滤等作用下,矿物、矸石中的金属和硫化物会溶出进入周边环境形成酸性矿井废水(AMD)[31]。本研究所选AMD中关键金属离子组成及质量浓度如图12所示。Ca2+初始质量浓度是Pb2+的39.43倍,总阳离子质量浓度是Pb2+的44.78倍。以OHA-MNPs为吸附剂,采用0.80 g/L的投加量吸附后,废水中Pb2+质量浓度由6.34 mg/L降至0.39 mg/L,实现了93.76%的去除率。OHA-MNPs对AMD中Pb2+表现出极高的选择性,可用于AMD中Pb2+的资源化回收利用。

图12 OHA-MNPs对AMD中重金属的吸附
Fig.12 Removal of Pb2+ in AMD using OHA-MNPs

2.6 吸附剂再生

将Hg2+或Pb2+吸附平衡后的OHA-MNPs浸泡于0.1 mol/L的乙二胺四乙酸(EDTA)溶液,充分搅拌,脱附时间为30 min。进一步用超纯水淋洗去除吸附剂表面残余EDTA,经低温烘干后进行再吸附。经过5次吸附-脱附循环后的吸附结果如图13所示。图13(a)为OHA-MNPs对Pb2+的循环再生结果,5个循环后OHA-MNPs对Pb2+吸附容量基本维持不变,吸附剂表现出良好的再生性。图13(b)为Hg2+的吸附再生,在3个循环后,OHA-MNPs对Hg2+的吸附容量明显下降,这可能是由于OHA-MNPs表面基团对Hg2+存在更加稳定的化学吸附作用,脱附剂EDTA同Hg2+的络合作用不足以挣脱吸附剂表面,使得部分Hg2+仍然占据吸附位点。

图13 OHA-MNPs的循环再生能力
Fig.13 Regenerability of OHA-MNPs

3 结 论

(1)OHA-MNPs表面腐植酸含量约为9.81%,颗粒粒径主要分布于7~11 nm,具有很好的溶液分散性。

(2)OHA-MNPs能够在5 min内对溶液中绝大多数的Pb2+或Hg2+快速去除,且能在30 min内达到吸附平衡;准二级动力学和Langmuir吸附模型能够很好的描述OHA-MNPs对Pb2+或Hg2+的吸附动力学和热力学。

(3)OHA-MNPs对Pb2+或Hg2+的吸附以高密度含氧基团多齿配位为主,并伴有酸性基团离子交换和静电吸附;此外,腐植酸中原生硫参与对Hg2+的络合配位。

(4)OHA-MNPs对Pb2+和Hg2+均表现出高的吸附选择性,在溶液pH=3.0~6.0时满足Hg2+ >Pb2+ ≫ Cu2+ ≫ Ni2+/Cd2+选择性序列;在总阳离子质量浓度是Pb2+的44.78倍AMD实际废水中,可实现对93.76%的Pb2+选择性去除;0.1 mol/L的EDTA溶液可作为OHA-MNPs对Pb2+或Hg2+吸附后的再生脱附剂。

参考文献(References):

[1] XU G,ZHAO Y,HOU L,et al.A recyclable phosphinic acid functionalized polyacrylonitrile fiber for selective and efficient removal of Hg2+[J].Chemical Engineering Journal,2017,325:533-543.

[2] YAP P L,KABIRI S,TRAN D N H,et al.Multifunctional binding chemistry on modified graphene composite for selective and highly efficient adsorption of mercury[J].Applied Materials & Interfaces,2019,11:6350-6362.

[3] 狄军贞,李拓达,赵微.硫酸盐还原菌利用不同生物质碳源对酸性矿山废水的处理[J].煤炭学报,2019,44(6):1915-1922.

DI Junzhen,LI Tuoda,ZHAO Wei,Treatment acid mine drainage by sulfate reducing bacteria using different biomass carbon sources[J].Journal of China Coal Society,2019,44(6):1915-1922.

[4] KOESNARPADI S,SANTOSA S,SISWANTA D,et al.Synthesis and characterizatation of magnetite nanoparticle coated humic acid (Fe3O4/HA)[J].Procedia Environmental Sciences,2015,30:103-108.

[5] ZHANG Z,SHI W,MA H,et al.Binding mechanism between fulvic acid and heavy metals:Integrated interpretation of binding experiments,fraction characterizations,and models[J].Water Air and Soil Pollution,2020,231:1-12.

[6] FU W,HUANG Z.One-pot synthesis of a two-dimensional porous Fe3O4/Poly(C3N3S3) network nanocomposite for the selective removal of Pb(II) and Hg(II) from synthetic wastewater[J].ACS Sustainable Chemistry & Engineering,2018,6:14785-14794.

[7] DONIA A M,ATIA A A,ABOUZAYED F I.Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions[J].Chemical Engineering Journal,2012,191:22-30.

[8] LI K,WANG Y,HUANG M,et al.Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water[J].Journal of Colloid and Interface Science,2015,455:261-270.

[9] SU C.Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites:A review of recent literature[J].Journal of Hazardous Materials,2017,322:48-84.

[10] RASHID M,STERBINSKY G E,PINILLA M G,et al.Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles[J].The Journal of Physical Chemistry C,2018,122:13540-13547.

[11] SINGHAL P,JHA S K,PANDEY S P,et al.Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles[J].Journal of Hazardous Materials,2017,335:152-161.

[12] JIANG W,CAI Q,XU W,et al.Cr(Ⅵ) adsorption and reduction by humic acid coated on magnetite[J].Environmental Science & Technology,2014,48:8078-8085.

[13] GUTIERREZ-ORTEGA J A,GOMEZ-SALAZAR S,SHENDEROVICH I G,et al.Efficiency and lead uptake mechanism of a phosphonate functionalized mesoporous silica through P/Pb association ratio[J].Materials Chemistry and Physics,2020,239:122037.

[14] GUO R,JIAO T,LI R,et al.Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal[J].ACS Sustainable Chemistry & Engineering,2018,6 (1):1279-1288.

[15] XUE S,XIAO Y,WANG G,et al.Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,616:126333.

[16] ZHANG X,YAN L,LI J,et al.Adsorption of heavy metals by l-cysteine intercalated layered double hydroxide:Kinetic,isothermal and mechanistic studies[J].Journal of Colloid Interface Science,2020,562:149-158.

[17] LIU J F,ZHAO Z S,JIANG G B.Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J].Environmental Science & Technology,2008,42(18):6949-6954.

[18] CHEN Z M,GENG Z R,ZHANG Z Y,et al.Synthesis of magnetic Fe3O4@C nanoparticles modified with-SO3H and -COOH groups for fast removal of Pb2+,Hg2+,and Cd2+ ions[J].European Journal of Inorganic Chemistry,2014,20:3172-3177.

[19] KABIRI S,TRAN D N H,AZARI S,et al.Graphene-diatom silica aerogels for efficient removal of mercury ions from water[J].ACS Applied Materials & Interfaces,2015,7(22):11815-11823.

[20] ZHANG B,WANG Y,ZHANG J,et al.Well-defined 3-Aminopropyltriethoxysilane functionalized magnetite nanoparticles and their adsorption performance for partially hydrolyzed polyacrylamide from aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586:124288.

[21] LI X,LIU Y,ZHANG C,et al.Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions[J].Chemical Engineering Journal,2018,336:241-252.

[22] JANOS P,KORMUNDA M,ZIVOTSKY O,et al.Composite Fe3O4/humic acid magnetic sorbent and its sorption ability for chlorophenols and some other aromatic compounds[J].Separation Science and Technology,2013,48(13):2028-2035.

[23] LESIAK B,KOVER L,TOTH J,et al.C sp2/sp3 hybridisations in carbon nanomaterials-XPS and (X)AES study[J].Applied Surface Science,2018,452:223-231.

[24] WU Z,DENG W,ZHOU W,et al.Novel magnetic polysaccharide/graphene oxide @Fe3O4 gel beads for adsorbing heavy metal ions[J].Carbohydrate Polymers,2019,216:119-128.

[25] ZHANG S,LI X,CHEN J P.An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber[J].Journal of Colloid and Interface Science,2010,343(1):232-238.

[26] MICHAEL B S.March高等有机化学——反应、机理与结构(原著第7版)[M].北京:化学工业出版社,2018:193-199.

[27] LIU J,DAI C,HU Y.Aqueous aggregation behavior of citric acid coated magnetite nanoparticles:Effects of pH,cations,anions,and humic acid[J].Environmental Research,2018,161:49-60.

[28] GONCALVES N P F,MINELLA M,FABBRI D,et al.Humic acid coated magnetic particles as highly efficient heterogeneous photo-Fenton materials for wastewater treatments[J].Chemical Engineering Journal,2020,390:124619.

[29] JIANG Y,HAO Z,LUO H,et al.Synergistic effects of boron-doped silicone resin and a layered double hydroxide modified with sodium dodecyl benzenesulfonate for enhancing the flame retardancy of polycarbonate[J].RSC Advances 2018,8(20):11078-11086.

[30] NEWCOMB,CHRISTINA J.Humic matter in soil and the environment,principles and controversies[J].Soil science Society of America Journal 2003,79(5):1520.

[31] 佘臣杰,唐婕琳,何环,等.Desulfuromonas alkenivorans S-7联合稻壳处理酸性重金属废水[J].煤炭学报,2019,44(9):2851-2858.

SHE Chenjie,TANG Jielin,HE Huan,et al.Combining desulfuromonas alkenivorans S-7 with rice husk to treat acid heavy metal wastewater[J].Journal of China Coal Society,2019,44(9):2851-2858.

Humic acid magnetic nanoparticles for the selective removal of Pb2+ and Hg2+ in water

WAN Keji1,FAN Jinjin2,WANG Guoqiang2,XU Enle2,HE Qiongqiong1,MIAO Zhenyong1,2,ZHANG Mingliang3

(1.National Engineering Research Center of Coal Preparation and Purification,China University of Mining and Technology,Xuzhou 221116,China; 2.School of Chemical Engineering & Technology,China University of Mining and Technology,Xuzhou 221116,China; 3.Inner Mongolia Yitai Jingyue Suancigou Coal Co.,Ltd.,Ordos 010300,China)

Abstract:Because of the non-degradation of heavy metals (HMs),the control on the pollution transfer of HMs in water treatment,and their recycling utilization would be an effective way to achieve a win-win situation of environmental and economic benefits.In this case,the adsorbent with a selectivity for the target heavy metals is required.Therefore,the density of oxygen-containing functional groups on the surface of humic acid (HA) was improved by hydroxymethylation modification to promote the formation of multi-coordination structure,which had a high adsorption stability and affinity towards certain HMs.Finally,the hydroxymethylated HA magnetic nanoparticles (OHA-MNPs) with high selectivity and easy solid-liquid separation were prepared by co-precipitation,which was used for the deep removal of heavy metals in wastewater.The characterization of adsorbent,adsorption kinetics,adsorption thermodynamics,adsorption mechanism,adsorption selectivity for Pb2+ and Hg2+ under competitive adsorption,and the regeneration of adsorbent were studied.The results show that the content of HA attached on the surface of OHA-MNPs is about 9.81%.The particle size of adsorbent is mainly distributed in 7-11 nm,which shows good dispersion.The pseudo-second order kinetics and Langmuir adsorption model could well describe the adsorption kinetics and thermodynamics of Pb2+ or Hg2+ on OHA-MNPs.The adsorption of OHA-MNPs towards Pb2+ or Hg2+ is mainly attributed to the coordination of oxygen-containing functional groups,accompanied by ion exchange and electrostatic adsorption.In the solution with mixed metals,OHA-MNPs has a high selectivity for Pb2+ and Hg2+ and the selective adsorption sequence is Hg2+ > Pb2+ ≫ Cu2+ ≫ Ni2+/Cd2+.About 93.76% of Pb2+ can be selectively removed in acid mine wastewater with total cation concentration 44.78 times that of Pb2+.Besides,OHA-MNPs also has good regeneration ability.Therefore,OHA-MNPs is a kind of efficient,green and low-cost adsorbent for the removal of heavy metals in wastewater.

Key words:humic acid;magnetic nanoparticles;hydroxymethylation;heavy metals adsorption;acid mine wastewater

中图分类号:TD984

文献标志码:A

文章编号:0253-9993(2021)09-2746-09

移动阅读

收稿日期:2021-05-13

修回日期:2021-07-15

责任编辑:钱小静

DOI:10.13225/j.cnki.jccs.FX21.0830

基金项目:国家自然科学基金资助项目(52004280);江苏省自然科学基金资助项目(BK20190629);国家重点研发计划资助项目(2019YFC1904301)

作者简介:万克记(1989—),男,山东莒县人,助理研究员,博士。E-mail:cumtwankeji@126.com

通讯作者:苗真勇(1981—),男,江苏淮安人,教授,博士。E-mail:zymiao@cumt.edu.cn

引用格式:万克记,范津津,王国强,等.煤系腐植酸磁性颗粒对水中Pb2+和Hg2+的选择性吸附[J].煤炭学报,2021,46(9):2746-2754.

WAN Keji,FAN Jinjin,WANG Guoqiang,et al.Humic acid magnetic nanoparticles for the selective removal of Pb2+ and Hg2+ in water[J].Journal of China Coal Society,2021,46(9):2746-2754.

Baidu
map